在△ABC中,AC=BC,∠ACB=90°,点D为AC的中点。(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连结CF,过点F作FH⊥FC,交直线AB于点H。判断F

题目简介

在△ABC中,AC=BC,∠ACB=90°,点D为AC的中点。(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连结CF,过点F作FH⊥FC,交直线AB于点H。判断F

题目详情

在△ABC中,AC=BC,∠ACB=90°,点D为AC的中点。
(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连结CF,过点F作FH⊥FC,交直线AB于点H。判断FH与FC的数量关系并加以证明;
(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明。
题型:解答题难度:偏难来源:北京中考真题

答案

解:(1)FH与FC的数量关系是:FH=FC;
证明:延长交于点G,
由题意,知∠EDF=∠ACB=90°,DE=DF,
∴DG∥CB,
∵点D为AC的中点,
∴点G为AB的中点,且DC=AC,
∴DG为△ABC的中位线,

∵AC=BC,
∴DC=DG,
∴DC-DE=DG-DF,即EC=FG,
∵∠EDF=90°,FH⊥FC,
∴∠1+∠CFD=90°,∠2+∠CFD=90°,
∴∠1=∠2,
∵△DEF与△ADG都是等腰直角三角形,
∴∠DEF=∠DGA=45°,
∴∠CEF=∠FGH=135°,
∴△CEF≌△FGH,
∴CF=FH;
(2)FH与FC仍然相等。

更多内容推荐