设f(x)=sinx,g(x)=a+cosx,x∈[0,2π],若f(x)的图象与g(x)的图象交点的个数有且仅有一个,则a的值为______.-数学

题目简介

设f(x)=sinx,g(x)=a+cosx,x∈[0,2π],若f(x)的图象与g(x)的图象交点的个数有且仅有一个,则a的值为______.-数学

题目详情

设f(x)=sinx,g(x)=a+cosx,x∈[0,2π],若f(x)的图象与g(x)的图象交点的个数有且仅有一个,则a的值为______.
题型:填空题难度:中档来源:不详

答案

∵f(x)的图象与g(x)的图象交点的个数有且仅有一个,
∴sinx=a+cosx,在x∈[0,2π]仅有一个解,
∴a=sinx-cosx=
2
sin(x+class="stub"π
4
)在x∈[0,2π]仅有一个解,
∵y=
2
sin(x+class="stub"π
4
)的周期正好是2π
由其图象知,当a的值为
2
-
2
时a=sinx-cosx=
2
sin(x+class="stub"π
4
)在x∈[0,2π]仅有一个解,
即f(x)的图象与g(x)的图象交点的个数有且仅有一个
故答案为
2
-
2

更多内容推荐