已知函数f(x)=ax+b1+x2是定义在(-1,1)上的奇函数,其中a、b∈R且f(12)=25(1)求函数f(x)的解析式;(2)判断函数f(x)在区间(-1,1)上的单调性,并用单调性定义证明你

题目简介

已知函数f(x)=ax+b1+x2是定义在(-1,1)上的奇函数,其中a、b∈R且f(12)=25(1)求函数f(x)的解析式;(2)判断函数f(x)在区间(-1,1)上的单调性,并用单调性定义证明你

题目详情

已知函数f(x)=
ax+b
1+x2
是定义在(-1,1)上的奇函数,其中a、b∈R且f(
1
2
)=
2
5

(1)求函数f(x)的解析式;
(2)判断函数f(x)在区间(-1,1)上的单调性,并用单调性定义证明你的结论;
(3)解关于t的不等式f(t-1)+f(t2)<0.
题型:解答题难度:中档来源:不详

答案

:(1)∵f(x)=class="stub"ax+b
1+x2
为奇函数,且 f(class="stub"1
2
)=
a•class="stub"1
2
+b
1+(class="stub"1
2
)
2
=class="stub"2
5

∴f(-class="stub"1
2
)=
a•(-class="stub"1
2
)+b
1+(-class="stub"1
2
)
2
=-f(class="stub"1
2
)=-class="stub"2
5
,解得:a=1,b=0.
∴f(x)=class="stub"x
1+x2

(2)证明:在区间(-1,1)上任取x1,x2,令-1<x1<x2<1,
∴f(x1)-f(x2)=
x1
1+x1 2
-
x2
1+x2 2
=
(x1-x2)(1-x1x2)
(1+x1 2)(1+x2 2)   

∵-1<x1<x2<1
∴x1-x2<0,1-x1x2>0,1+x12>0,1+x22>0
∴f(x1)-f(x2)<0即f(x1)<f(x2)
故函数f(x)在区间(-1,1)上是增函数.
(3)∵f(t-1)+f(t2)<0
∴f(t2)<-f(t-1)=f(1-t)
∵函数f(x)在区间(-1,1)上是增函数
t2<1-t
-1<t2<1
-1<1-t<1

∴0<t<
5
-1
2

故关于t的不等式的解集为 (0,
5
-1
2
).

更多内容推荐