设f(x)=x3+log2(x+x2+1),则对任意实数a,b,a+b≥0是f(a)+f(b)≥0的()A.充分必要条件B.充分而非必要条件C.必要而非充分条件D.既非充分也非必要条件-数学

题目简介

设f(x)=x3+log2(x+x2+1),则对任意实数a,b,a+b≥0是f(a)+f(b)≥0的()A.充分必要条件B.充分而非必要条件C.必要而非充分条件D.既非充分也非必要条件-数学

题目详情

f(x)=x3+log2(x+
x2+1
)
,则对任意实数a,b,a+b≥0是f(a)+f(b)≥0的(  )
A.充分必要条件B.充分而非必要条件
C.必要而非充分条件D.既非充分也非必要条件
题型:单选题难度:偏易来源:茂名二模

答案

f(x)=x3+log2(x+
x2+1
),f(x)的定义域为R
∵f(-x)=-x3+log2(-x+
x2+1
)=-x3+log2class="stub"1
x+
x2+1

=-x3-log2(x+
x2+1
)=-f(x).
∴f(x)是奇函数
∵f(x)在(0,+∞)上是增函数
∴f(x)在R上是增函数
a+b≥0可得a≥-b
∴f(a)≥f(-b)=-f(b)
∴f(a)+f(b)≥0成立
若f(a)+f(b)≥0则f(a)≥-f(b)=f(-b)由函数是增函数知
a≥-b
∴a+b≥0成立
∴a+b≥0是f(a)+f(b)≥0的充要条件.

更多内容推荐