(1)试求i1,i2,i3,i4,i5,i6,i7,i8的值;(2)由(1)推测in(n∈N*)的值有什么规律,并用式子表示出来.(3)计算:i2012的值.-数学

题目简介

(1)试求i1,i2,i3,i4,i5,i6,i7,i8的值;(2)由(1)推测in(n∈N*)的值有什么规律,并用式子表示出来.(3)计算:i2012的值.-数学

题目详情

(1)试求i1,i2,i3,i4,i5,i6,i7,i8的值;
(2)由(1)推测in(n∈N*)的值有什么规律,并用式子表示出来.
(3)计算:i2012的值.
题型:解答题难度:中档来源:不详

答案

(1)i1=i,i2=-1,i3=i2•i=-i;i4=(i2)2=(-1)2=1,i5=i4•i=i,i6=(i2)3=(-1)3=-1,i7=i6•i=-i,i8=(i4)2=1,…
(2))∵i1=i,i2=-1,i3=i2•i=-i;i4=(i2)2=(-1)2=1,
从n=1开始,4个一次循环.
∴i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i(n为自然数),
(3)由于2012=4×503,
∴i2012的值=1.

更多内容推荐