如图,平面四边形ABCD中,AB=BC=CD=a,∠B=90°,∠C=135°,沿对角线AC将△ABC折起,使平面ABC与平面ACD互相垂直.(1)求证:AB⊥平面BCD;(2)求点C到平面ABD的距

题目简介

如图,平面四边形ABCD中,AB=BC=CD=a,∠B=90°,∠C=135°,沿对角线AC将△ABC折起,使平面ABC与平面ACD互相垂直.(1)求证:AB⊥平面BCD;(2)求点C到平面ABD的距

题目详情

如图,平面四边形ABCD中,AB=BC=CD=a,∠B=90°,∠C=135°,沿对角线AC将△ABC折起,使平面ABC与平面ACD互相垂直.
(1)求证:AB⊥平面BCD;
(2)求点C到平面ABD的距离;
(3)在BD上是否存在一点P,使CP⊥平面ABD,证明你的结论.360优课网
题型:解答题难度:中档来源:不详

答案

(1)取AC的中点M,因为AB=AC,所以BM⊥AC
∵平面ABC⊥平面ACD,∴BM⊥平面ACD,∴BM⊥CD
∵AB=BC=CD=a,∠B=class="stub"π
2
∴∠BAC=∠BCA=class="stub"π
4

∵∠ACD=class="stub"3π
4
,∴∠ACD=class="stub"π
2
,即AC⊥CD
∵AC∩BM=M∴CD⊥平面ABC∴CD⊥AB
∵AB⊥BC且BC∩CD=C
AB⊥平面BCD
(2)由(1)知BA为B到平面ACD的距离,且BM=
2
2
a

设点C到平面ABD的距离h
由已知可得AC=
2
a
,∠ACD=class="stub"π
2
,由(1)可得∠AMD=class="stub"π
2
,从而可得AD=
AM2DM2
=
2
a

根据等体积可得class="stub"1
3
×class="stub"1
2
×BM×SACD
=class="stub"1
3
×class="stub"1
2
×SABD×h

2
a
2
×
2
a×a=a×
2
a×h

h=
2
2
a

点C到平面ABD的距离
2
2
a

(3)假设存在满足条件的P,使得CP⊥平面ABD
则CP⊥BD①,∵BC=CD=a∴P为DB的中点
而此时CP=
2
a
2
,AP=
6
a
2
,AC=
2
a
,则AC2=AP2+CP2
∴AP⊥CP②由①②根据直线与平面垂直的判定定理可得此时的P满足条件,
故存在P为BD的中点

更多内容推荐