数列的各项均为正数,为其前项和,对于任意,总有成等差数列.(1)求数列的通项公式;(2)设数列的前项和为,且,求证:对任意实数是常数,和任意正整数,总有(3)正数数列中,求-高三数学

题目简介

数列的各项均为正数,为其前项和,对于任意,总有成等差数列.(1)求数列的通项公式;(2)设数列的前项和为,且,求证:对任意实数是常数,和任意正整数,总有(3)正数数列中,求-高三数学

题目详情

数列的各项均为正数,为其前项和,对于任意,总有成等差数列.
(1)求数列的通项公式; 
(2)设数列的前项和为,且,求证:对任意实数是常数,和任意正整数,总有
(3)正数数列中,求数列中的最大项.
题型:解答题难度:偏易来源:不详

答案

(1)(2)略(3)
(1)由已知,对于任意,总有  ①成立
所以 ②…………(1分)
①-②得,

均为正数,
数列是公差为1的等差数列…………(3分)
时,,解得
…………(5分)
(2)证明:对任意实数是常数,和任意正整数,总有
,…………(6分)

…………(9分)
(3)由已知

易得
猜想时,是递减数列…………(10分)

时,
内,为单调递减函数,…………(12分)

时,是递减数列,即是递减数列,…………(13分)
数列中的最大项为.…………(14分)

更多内容推荐