如图1,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连结AP,将线段AP绕点A逆时针旋转60°得到线段AQ,连结QE并延长交射线BC于点F。(1)如图2,

题目简介

如图1,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连结AP,将线段AP绕点A逆时针旋转60°得到线段AQ,连结QE并延长交射线BC于点F。(1)如图2,

题目详情

如图1,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连结AP,将线段AP绕点A逆时针旋转60°得到线段AQ,连结QE并延长交射线BC于点F。
(1)如图2,当BP=BA时,∠EBF=____°,猜想∠QFC=____°;
(2)如图1,当点P为射线BC上任意一点时,猜想∠QFC的度数,并加以证明;
(3)已知线段AB=,设BP=x,点Q到射线BC的距离为y,求y关于x的函数关系式。
题型:解答题难度:中档来源:浙江省中考真题

答案

解:(1)∠EBF=30°,∠QFC=60°;
(2)∠QFC=60°,
不妨设BP>,如图1所示,
∵∠BAP=∠BAE+∠EAP=60°+∠EAP,
∠EAQ=∠QAP+∠EAP=60°+∠EAP,
∴∠BAP=∠EAQ,
在△ABP和△AEQ中,
AB=AE,∠BAP=∠EAQ,AP=AQ,
∴△ABP≌△AEQ(SAS),
∴∠AEQ=∠ABP=90°,
∴∠BEF=
∴∠QFC=30°+30°=60°;
(3)在图1中,过点F作FG⊥BE于点G,
∵△ABE是等边三角形,
∴BE=AB=
由(1)得30°,
在Rt△BGF中,
∴BF=
∴EF=2,
∵△ABP≌△AEQ,
∴QE=BP=x,
∴QF=QE+EF=x+2,
过点Q作QH⊥BC,垂足为H,
在Rt△QHF中,(x>0)
即y关于x的函数关系式是:

更多内容推荐