已知,如图,△OAB中,OA=OB,⊙O经过AB的中点C,且与OA、OB分别交于点D、E.(1)如图①,判断直线AB与⊙O的位置关系并说明理由;(2)如图②,连接CD、CE,当△OAB满足什么条件时,

题目简介

已知,如图,△OAB中,OA=OB,⊙O经过AB的中点C,且与OA、OB分别交于点D、E.(1)如图①,判断直线AB与⊙O的位置关系并说明理由;(2)如图②,连接CD、CE,当△OAB满足什么条件时,

题目详情

已知,如图,△OAB中,OA=OB,⊙O经过AB的中点C,且与OA、OB分别交于点D、E.

360优课网

(1)如图①,判断直线AB与⊙O的位置关系并说明理由;
(2)如图②,连接CD、CE,当△OAB满足什么条件时,四边形ODCE为菱形,并证明你的结论.
题型:解答题难度:中档来源:不详

答案


360优课网
(1)相切;
理由如下:如图①,连接OC.
∵OA=OB,点C是线段AB的中点,
∴OC⊥AB;
又∵OC是⊙O的半径,点C在⊙O上,
∴直线AB与⊙O相切;

(2)如图②,连接OC,则OC=OD;
∵四边形ODCE为菱形,
∴OD=CD,
∴OC=OD=CD,
∴△ODC为等边三角形,
∴∠AOC=60°.
由(1)知,∠OCA=90°,
∴∠A=30°(或∠B=30°或∠AOB=120°).

更多内容推荐