将两个全等的直角三角形ABC和DBE按图1方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)求证:CF=EF;(2)若将图1中的△D
(1)证明:连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,∴△BCF和△BEF是直角三角形,在Rt△BCF和Rt△BEF中,,
∴△BCF≌△BEF,∴CF=EF;(2)AF+EF=DE;故答案为:=;(3)证明:连接BF,∵△ABC≌△DBE,∴BC=BE,∵∠ACB=∠DEB=90°,∴△BCF和△BEF是直角三角形,在Rt△BCF和Rt△BEF中,,∴△BCF≌△BEF,∴CF=EF;∵△ABC≌△DBE,∴AC=DE,∴AF=AC+FC=DE+EF.
题目简介
将两个全等的直角三角形ABC和DBE按图1方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)求证:CF=EF;(2)若将图1中的△D
题目详情
(1)求证:CF=EF;
(2)若将图1中的△DBE绕点B按顺时针方向旋转角a,且0°<a<60°,其他条件不变,如图2.请你直接写出AF+EF与DE的大小关系:AF+EF( )DE.(填“>”或“=”或“<”)
(3)若将图(1)中△DBE的绕点B按顺时针方向旋转角β,且60°<β<180°,其他条件不变,如图3.请你写出此时AF、EF与DE之间的关系,并加以证明.
答案
(1)证明:连接BF,∵△ABC≌△DBE,
,
∴BC=BE,
∵∠ACB=∠DEB=90°,
∴△BCF和△BEF是直角三角形,在Rt△BCF和Rt△BEF中,
∴△BCF≌△BEF,
,
∴CF=EF;
(2)AF+EF=DE;故答案为:=;
(3)证明:连接BF,
∵△ABC≌△DBE,
∴BC=BE,
∵∠ACB=∠DEB=90°,
∴△BCF和△BEF是直角三角形,在Rt△BCF和Rt△BEF中,
∴△BCF≌△BEF,
∴CF=EF;
∵△ABC≌△DBE,
∴AC=DE,
∴AF=AC+FC=DE+EF.