如图1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8,以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E。(1)求点B的坐标;(2)求证:四边形ABC

题目简介

如图1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8,以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E。(1)求点B的坐标;(2)求证:四边形ABC

题目详情

如图1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8,以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E。
(1)求点B的坐标;
(2)求证:四边形ABCE是平行四边形;
(3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长。
题型:解答题难度:偏难来源:广西自治区中考真题

答案

解:(1)在△OAB中,∠OAB=90°,∠AOB=30°,OB=8,
∴OA=OB·cos30°=8×
AB=OB·sin30°=8×=4,
∴点B的坐标为(4,4);
(2)证明:∵∠OAB=90°,
∴AB⊥x轴,
∵y轴⊥x轴,
∴AB∥y轴,即AB∥CE,
∵∠AOB=30°,
∴∠OBA=60°,
∵D是OB的中点,
∴DA=DB,
即∠DAB=∠DBA=60°,
∴∠ADB=60°,
∵△OBC是等边三角形,
∴∠OBC=60°,
∴∠ADB=∠OBC,即AD∥BC,
∴四边形ABCE是平行四边形;
(3)设OG的长为x,
∵OC=OB=8,
∴CG=8-x,
由折叠的性质可得:AG=CG=8-x,
在Rt△AOG中,AG2=OG2+OA2,
即(8-x)2=x2+(4)2,
解得:x=1,即OG=1。

更多内容推荐