已知:如图,矩形ABCD中AB:BC=5:6,点E在BC上,点F在CD上,EC=16BC,FC=35CD,FG⊥AE与G.求证:AG=4GE.-数学

题目简介

已知:如图,矩形ABCD中AB:BC=5:6,点E在BC上,点F在CD上,EC=16BC,FC=35CD,FG⊥AE与G.求证:AG=4GE.-数学

题目详情

已知:如图,矩形ABCD中AB:BC=5:6,点E在BC上,点F在CD上,EC=
1
6
BC,FC=
3
5
CD,FG⊥AE与G.求证:AG=4GE.360优课网
题型:解答题难度:中档来源:不详

答案

证明:如图∵矩形ABCD中,AB=CD,AD=BC,AB:BC=5:6,EC=class="stub"1
6
BC,FC=class="stub"3
5
CD,
∴DF=class="stub"2
5
CD.
class="stub"AD
CF
=class="stub"BC
class="stub"3
5
AB
=2,class="stub"DF
CE
=
class="stub"2
5
CD
class="stub"1
6
BC
=
class="stub"2
5
AB
class="stub"1
6
BC
=2,
360优课网

class="stub"AD
CF
=class="stub"DF
CE

又∵∠ECF=∠FDF,
∴△CEF△DFA,
class="stub"AF
EF
=class="stub"AD
CF
=2,∠AFD=∠FEC,
∴∠AFD+∠CFE=∠FEC+∠CFE=90°,
∴∠AFE=90°.
又∵FG⊥AE,
∴△AFE△AGF,△AFG△FEG,
class="stub"AF
AG
=class="stub"EF
FG
,即class="stub"AF
EF
=class="stub"AG
FG
=2,则AG=2FG.
class="stub"AF
EF
=class="stub"FG
EG
=2,则EG=class="stub"1
2
FG,
∴AG=4EG.

更多内容推荐