如图,在矩形ABCD中,AB=2DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=2,图中阴影部分的面积为。-九年级数学

题目简介

如图,在矩形ABCD中,AB=2DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=2,图中阴影部分的面积为。-九年级数学

题目详情

如图,在矩形ABCD中,AB=2DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=2,图中阴影部分的面积为           。
题型:填空题难度:中档来源:不详

答案


试题分析:根据直角三角形30°角所对的直角边等于斜边的一半可得∠AED=30°,然后求出DE,再根据阴影部分的面积=S扇形AEF-S△ADE列式计算即可得解.
∵AB=2DA,AB=AE(扇形的半径),
∴AE=2DA=2×2=4,
∴∠AED=30°,
∴∠DAE=90°-30°=60°,
DE=
∴阴影部分的面积=S扇形AEF-S△ADE,
=
=

更多内容推荐