如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D。求证:BC是⊙O切线.-九年级数学

题目简介

如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D。求证:BC是⊙O切线.-九年级数学

题目详情

如图,在△ABC中,∠C=90°, AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D。求证:BC是⊙O切线.
题型:解答题难度:中档来源:不详

答案

证明见解析.

试题分析:如图,连接OD.欲证BC是⊙O切线,只需证明OD⊥BC即可.
如图,连接OD.设AB与⊙O交于点E.

∵AD是∠BAC的平分线,
∴∠BAC=2∠BAD,
又∵∠EOD=2∠EAD,
∴∠EOD=∠BAC,
∴OD∥AC.
∵∠ACB=90°,
∴∠BDO=90°,即OD⊥BC,
又∵OD是⊙O的半径,
∴BC是⊙O切线.

更多内容推荐