如图,以△ABC的边AB为直径作⊙O,交BC于点D,且∠DAC=∠B.(1)求证:AC是⊙O的切线;(2)若点E是的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.-九年级数学

题目简介

如图,以△ABC的边AB为直径作⊙O,交BC于点D,且∠DAC=∠B.(1)求证:AC是⊙O的切线;(2)若点E是的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.-九年级数学

题目详情

如图,以△ABC的边AB为直径作⊙O,交BC于点D,且∠DAC=∠B.
(1)求证:AC是⊙O的切线;
(2)若点E是的中点,连接AE交BC于点F,当BD=5,CD=4时,求AF的值.
题型:解答题难度:中档来源:不详

答案

(1)证明见解析;(2).

试题分析:(1)证明△ADC∽△BAC,可得∠BAC=∠ADC=90°,继而可判断AC是⊙O的切线.
(2)根据(1)所得△ADC∽△BAC,可得出CA的长度,继而判断∠CFA=∠CAF,利用等腰三角形的性质得出AF的长度,继而得出DF的长,在Rt△AFD中利用勾股定理可得出AF的长.
(1)∵AB是⊙O的直径,
∴∠ADB=∠ADC=90°,
∵∠B=∠CAD,∠C=∠C,
∴△ADC∽△BAC,
∴∠BAC=∠ADC=90°,
∴BA⊥AC,
∴AC是⊙O的切线.
(2)∵BD=5,CD=4,
∴BC=9,
∵△ADC∽△BAC(已证),
,即AC2=BC×CD=36,
解得:AC=6,
在Rt△ACD中,AD=
∵∠CAF=∠CAD+∠DAE=∠ABF+∠BAE=∠AFD,
∴CA=CF=6,
∴DF=CA-CD=2,
在Rt△AFD中,AF=

更多内容推荐