数列{an}的前n项和记为Sn,a1=t,点(Sn,an+1)在直线y=2x+1上,n∈N*.(1)当实数t为何值时,数列{an}是等比数列?(2)在(1)的结论下,设bn=log3an+1,Tn是数

题目简介

数列{an}的前n项和记为Sn,a1=t,点(Sn,an+1)在直线y=2x+1上,n∈N*.(1)当实数t为何值时,数列{an}是等比数列?(2)在(1)的结论下,设bn=log3an+1,Tn是数

题目详情

数列{an}的前n项和记为Sna1t,点(Snan+1)在直线y=2x+1上,n∈N*.
(1)当实数t为何值时,数列{an}是等比数列?
(2)在(1)的结论下,设bn=log3an+1Tn是数列的前n项和, 求T2 013的值.
题型:解答题难度:中档来源:不详

答案

(1)t=1(2)
(1)由题意得an+1=2Sn+1,an=2Sn-1+1(n≥2),两式相减得an+1-an=2an,即an+1=3an(n≥2),所以当n≥2时,数列{an}是等比数列,要使n≥1时,数列{an}是等比数列,只需=3,从而t=1.
(2)由(1)得:an=3n-1,bn=log3an+1=n.
T2 013=
.

更多内容推荐