设x,y,z∈R,且满足:x2+y2+z2=1,x+2y+3z=14,则x+y+z=______.-数学

题目简介

设x,y,z∈R,且满足:x2+y2+z2=1,x+2y+3z=14,则x+y+z=______.-数学

题目详情

设x,y,z∈R,且满足:x2+y2+z2=1,x+2y+3z=
14
,则x+y+z=______.
题型:填空题难度:偏易来源:湖北

答案

根据柯西不等式,得
(x+2y+3z)2≤(12+22+32)(x2+y2+z2)=14(x2+y2+z2)
当且仅当class="stub"x
1
=class="stub"y
2
=class="stub"z
3
时,上式的等号成立
∵x2+y2+z2=1,∴(x+2y+3z)2≤14,
结合x+2y+3z=
14
,可得x+2y+3z恰好取到最大值
14

class="stub"x
1
=class="stub"y
2
=class="stub"z
3
=
14
14
,可得x=
14
14
,y=
14
7
,z=
3
14
14

因此,x+y+z=
14
14
+
14
7
+
3
14
14
=
3
14
7

故答案为:
3
14
7

更多内容推荐