已知函数f(x)=5-6x,数列{an}满足:a1=a,an+1=f(an),n∈N*.(1)若对于n∈N*,均有an+1=an成立,求实数a的值;(2)若对于n∈N*,均有an+1>an成立,求实数

题目简介

已知函数f(x)=5-6x,数列{an}满足:a1=a,an+1=f(an),n∈N*.(1)若对于n∈N*,均有an+1=an成立,求实数a的值;(2)若对于n∈N*,均有an+1>an成立,求实数

题目详情

已知函数f(x)=5-
6
x
,数列{an}满足:a1=a,an+1=f(an),n∈N*
(1)若对于n∈N*,均有an+1=an成立,求实数a的值;
(2)若对于n∈N*,均有an+1>an成立,求实数a的取值范围;
(3)请你构造一个无穷数列{bn},使其满足下列两个条件,并加以证明:①bn<bn+1,n∈N*;②当a为{bn}中的任意一项时,{an}中必有某一项的值为1.
题型:解答题难度:中档来源:崇明县二模

答案

(1)由题意得an+1=an=a,∴a=
5a -6
a 
,得a=2或a=3,符合题意
(2)设an+1>an,即
5an-6
an
an
,解得an<0或2<an<3
∴要使a2>a1成立,则a1<0或2<a1<3
①当a1<0时,
a2=
5a1-6
a1
=5-class="stub"6
a1
>5

a3-a2=
5a2-6
a2
-a2=
-(a2-2)(a2-3)
a2
<0

即a3<a2,不满足题意.
②当2<a1<3时,
a2=5-class="stub"6
a1
∈(2,3),a3=5-class="stub"6
a2
∈(2,3)

an∈(2,3),
此时,an+1-an=
5an-6
an
-an=
-(an-2)(an-3)
an
>0

∴an+1>an,满足题意.
综上,a∈(2,3)
(3)构造数列{bn}:b1=class="stub"3
2
bn+1=class="stub"6
5-bn

下面证明满足要求.
此时bn=5-class="stub"6
bn+1
,不妨设a取bn,
那么a2=5-class="stub"6
a1
=5-class="stub"6
bn
=bn-1a3=5-class="stub"6
a2
=5-class="stub"6
bn-1
=bn-2

an=5-class="stub"6
an-1
=5-class="stub"6
b2
=b1=class="stub"3
2
an+1=5-class="stub"6
an
=5-class="stub"6
b1
=1.

b1=class="stub"3
2
<2

可得bn+1=class="stub"6
5-bn
<2

因为bn+1-bn=class="stub"6
5-bn
-bn=
(bn-2)(bn-3)
5-bn
>0

所以bn<bn+1
又bn<2≠5,所以数列{bn}是无穷数列,
因此构造的数列{bn}符合题意.

更多内容推荐