如图,多面体ABCDEFG中,AB,AC,AD两两垂直,平面ABC∥平面DEFG,平面BEF∥平面ADGC,AB=AD=DG=2,AC=EF=1.(1)证明四边形ABED是正方形;(2)判断点B,C,

题目简介

如图,多面体ABCDEFG中,AB,AC,AD两两垂直,平面ABC∥平面DEFG,平面BEF∥平面ADGC,AB=AD=DG=2,AC=EF=1.(1)证明四边形ABED是正方形;(2)判断点B,C,

题目详情

如图,多面体ABCDEFG中,AB,AC,AD两两垂直,平面ABC∥平面DEFG,平面BEF∥平面ADGC,AB=AD=DG=2,AC=EF=1.
(1)证明四边形ABED是正方形;
(2)判断点B,C,F,G是否四点共面,并说明为什么?
(3)连接CF,BG,BD,求证:CF⊥平面BDG.
题型:解答题难度:中档来源:江苏月考题

答案

证明:(1)
同理AD∥BE,
则四边形ABED是平行四边形.
又AD⊥DE,AD=DE,
∴四边形ABED是正方形
(2)取DG中点P,连接PA,PF.
在梯形EFGD中,FP∥DE且FP=DE.
又AB∥DE且AB=DE,∴AB∥PF且AB=PF
∴四边形ABFP为平行四边形,
∴AP∥BF
在梯形ACGD中,AP∥CG,
∴BF∥CG,
∴B,C,F,G四点共面
(3)同(1)中证明方法知四边形BFGC为平行四边形.
且有AC∥DG、EF∥DG,从而AC∥EF,
∴EF⊥AD,BE∥AD
又BE=AD=2、EF=1故,而
故四边形BFGC为菱形,CF⊥BG
又由AC∥EF且AC=EF知CF∥AE.
正方形ABED中,AE⊥BD,故CF⊥BD.

更多内容推荐