用二次项定理证明32n+2-8n-9能被64整除(n∈N).-高三数学

题目简介

用二次项定理证明32n+2-8n-9能被64整除(n∈N).-高三数学

题目详情

用二次项定理证明32n+2-8n-9能被64整除(n∈N).
题型:解答题难度:中档来源:不详

答案

见解析
证明:32n+2-8n-9=9n+1-8n-9=(8+1)n+1-8n-9
8n+1+8n+…+82+8+-8n-9
=64(8n-1+8n-2+…+)+8(n+1)+1-8n-9
=M×64(记M=8n-1+8n-2+…+).
∵M为整数,∴64M能被64整除.

更多内容推荐