设复数z=(a+cosθ)+(2a-sinθ)i(i为虚数单位),若对任意实数θ,|z|≤2,则实数a的取值范围为______.-数学

题目简介

设复数z=(a+cosθ)+(2a-sinθ)i(i为虚数单位),若对任意实数θ,|z|≤2,则实数a的取值范围为______.-数学

题目详情

设复数z=(a+cosθ)+(2a-sinθ)i(i为虚数单位),若对任意实数θ,|z|≤2,则实数a的取值范围为______.
题型:填空题难度:偏易来源:静安区一模

答案

由z=(a+cosθ)+(2a-sinθ)i,
所以|z|=
(a+cosθ)2+(2a-sinθ)2

=
(2acosθ-4asinθ)+5a2+1

=
2
5
a(
5
5
cosθ-
2
5
5
sinθ)+5a2+1

=
2
5
acos(θ+α)+5a2+1
(tanα=2).
因为|z|≤2,
所以2
5
acos(θ+α)+5a2+1≤4

若a=0,此式显然成立,
若a>0,由2
5
acos(θ+α)+5a2+1≤4

5a2+2
5
a-3≤0
,解得0<a≤
5
5

若a<0,由2
5
acos(θ+α)+5a2+1≤4

5a2-2
5
a-3≤0
,解得-
5
5
≤a<0

所以对任意实数θ,满足|z|≤2的实数a的取值范围为[-
5
5
5
5
]

故答案为[-
5
5
5
5
]

更多内容推荐