如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,则AE的长为()A.B.3C.5D.-九年级数学

题目简介

如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,则AE的长为()A.B.3C.5D.-九年级数学

题目详情

如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A落在对角线BD上的点A′处,则AE的长为(  )
A.B.3C.5D.
题型:单选题难度:中档来源:不详

答案

A.

试题分析:∵AB=12,BC=5,
∴AD=5,
∴BD=
根据折叠可得:AD=A′D=5,
∴A′B=13-5=8,
设AE=x,则A′E=x,BE=12-x,
在Rt△A′EB中:(12-x)2=x2+82,
解得:x=.
故选A.

更多内容推荐