((本题满分14分)已知.(1)判断并证明的奇偶性;(2)判断并证明的单调性;(3)若对任意恒成立,求的取值范围.-高一数学

题目简介

((本题满分14分)已知.(1)判断并证明的奇偶性;(2)判断并证明的单调性;(3)若对任意恒成立,求的取值范围.-高一数学

题目详情

((本题满分14分)
已知.
(1)判断并证明的奇偶性;
(2)判断并证明的单调性;
(3)若对任意恒成立,求的取值范围.
题型:解答题难度:中档来源:不详

答案

(1) 为奇函数;
(2) 当时,上的增函数;
(3)
(1)(2)利用单调性和奇偶性的定义证明即可.
(3)解本小题的关键是利用单调性和奇偶性去掉法则符号f,转化为自变量的大小关系,最终转化为不等式恒成立问题解决.

,
,所以不等式转化为对任意恒成立解决即可.
解:(1) ,
为奇函数; …………2分
(2)设




时,上的增函数;
时,上的增函数.
综上可得,当时,上的增函数. ………………………8分
对任意恒成立,
对任意恒成立
对任意恒成立
对任意恒成立
对任意恒成立
 . ……………14分

更多内容推荐