已知∠AOB=90°,OM是∠AOB的平分线,按以下要求解答问题:(1)将三角板的直角顶点P在射线OM上移动,两直角边分别与边OA,OB交于点C,D.①在图甲中,证明:PC=PD;②在图乙中,点G是-

题目简介

已知∠AOB=90°,OM是∠AOB的平分线,按以下要求解答问题:(1)将三角板的直角顶点P在射线OM上移动,两直角边分别与边OA,OB交于点C,D.①在图甲中,证明:PC=PD;②在图乙中,点G是-

题目详情

已知∠AOB=90°,OM是∠AOB的平分线,按以下要求解答问题:
(1)将三角板的直角顶点P在射线OM上移动,两直角边分别与边OA,OB交于点C,D.①在图甲中,证明:PC=PD;②在图乙中,点G是CD与OP的交点,且PG=PD,求△POD与△PDG的面积之比;
(2)将三角板的直角顶点P在射线OM上移动,一直角边与边OB交于点D,OD=1,另一直角边与直线OA,直线OB分别交于点C,E,使以P,D,E为顶点的三角形与△OCD相似,在图丙中作出图形,试求OP的长.
题型:解答题难度:偏难来源:福建省竞赛题

答案

解:(1)①证明:过P作PH⊥OA,PN⊥OB,垂足分别为H,N,得∠HPN=90°
∴∠HPC+∠CPN=90°
∵∠CPN+∠NPD=90°
∴∠HPC=∠NPD
∵OM是∠AOB的平分线
∴PH=PN
又∵∠PHC=∠PND=90°
∴△PCH≌△PDN
∴PC=PD
②∵PC=PD
∴∠PDG=45°
∵∠POD=45°
∴∠PDG=∠POD
∵∠GPD=∠DPO
∴△POD∽△PDG

(2)①若PC与边OA相交,
∵∠PDE>∠CDO
令△PDE∽△OCD
∴∠CDO=∠PED
∴CE=CD
∵CO⊥ED
∴OE=OD
∴OP=ED=OD=1
②若PC与边OA的反向延长线相交
过P作PH⊥OA,PN⊥OB,垂足分别为H,N,
∵∠PED>∠EDC
令△PDE∽△ODC
∴∠PDE=∠ODC
∵∠OEC=∠PED
∴∠PDE=∠HCP
∵PH=PN,Rt△PHC≌Rt△PND
∴HC=ND,PC=PD
∴∠PDC=45°
∴∠PDO=∠PCH=22.5°
∴∠OPC=180°﹣∠POC﹣∠OCP=22.5°
∴OP=OC.设OP=x,则OH=ON=
∴HC=DN=OD﹣ON=1﹣
∵HC=HO+OC=+x
∴1﹣=+x
∴x=
即OP=

更多内容推荐