已知AB∥CD,E是直线AC上的一个动点(不与点C重合),连接ED.(1)如图1,当点E在线段AC的延长线上时,证明∠CED+∠CDE+∠A=180°(2)如图2,当点E在线段AC上时,(1)中的结论

题目简介

已知AB∥CD,E是直线AC上的一个动点(不与点C重合),连接ED.(1)如图1,当点E在线段AC的延长线上时,证明∠CED+∠CDE+∠A=180°(2)如图2,当点E在线段AC上时,(1)中的结论

题目详情

已知ABCD,E是直线AC上的一个动点(不与点C重合),连接ED.
(1)如图1,当点E在线段AC的延长线上时,证明∠CED+∠CDE+∠A=180°
(2)如图2,当点E在线段AC上时,(1)中的结论是否成立?若成立.请证明;若不成立,请直接写出这三个角之间存在的等量关系.

360优课网
题型:解答题难度:中档来源:不详

答案

证明:(1)∵ABCD,∴∠A=∠ECD.
∵在△ECD中,∠CED+∠ECD+∠DCE=180°,
∴∠A+∠CED+∠CDE=180°.

(2)∵ABCD,
∴∠A+∠ECD=180°,
在△ECD中∠CED+∠CDE+∠C=180°,
∴∠CED+∠CDE+∠A=180°不成立.
等量关系为:∠A=∠CED+∠CDE.

更多内容推荐