若函数f(x)=ax3+bx2+cx+d满足f(0)=f(x1)=f(x2)="0"(0<x1<x2),且在[x2,+∞上单调递增,则b的取值范围是_________.

题目简介

若函数f(x)=ax3+bx2+cx+d满足f(0)=f(x1)=f(x2)="0"(0<x1<x2),且在[x2,+∞上单调递增,则b的取值范围是_________.

题目详情

若函数f(x)=ax3+bx2+cx+d满足f(0)=f(x1)=f(x2)="0" (0<x1<x2),且在[x2,+∞上单调递增,则b的取值范围是_________.
题型:填空题难度:中档来源:不详

答案

(-∞,0)
f(0)=f(x1)=f(x2)=0,
f(0)=d=0. f(x)=ax(xx1)(xx2)=ax3-a(x1+x2)x2+ax1x2x
b=-a(x1+x2),又f(x)在[x2,+∞单调递增,故a>0.
又知0<x1<x,得x1+x2>0,
b=-a(x1+x2)<0.

更多内容推荐