定义:若存在常数k,使得对定义域D内的任意两个不同的实数x1,x2,,均有:|f(x1)-f(x2)|≤k|x1-x2|成立,则称f(x)在D上满足利普希茨(Lipschitz)条件.对于函数f(x)

题目简介

定义:若存在常数k,使得对定义域D内的任意两个不同的实数x1,x2,,均有:|f(x1)-f(x2)|≤k|x1-x2|成立,则称f(x)在D上满足利普希茨(Lipschitz)条件.对于函数f(x)

题目详情

定义:若存在常数k,使得对定义域D内的任意两个不同的实数x1,x2,,均有:|f(x1)-f(x2)|≤k|x1-x2|成立,则称f(x)在D上满足利普希茨(Lipschitz)条件.对于函数f(x)=sinx满足利普希茨条件,则常数k的最小值为______.
题型:填空题难度:中档来源:不详

答案

由题意:|f(x1)-f(x2)|≤k|x1-x2|变为k≥
|f(x1)-f(x2)|
|x1-x2|

|f(x1)-f(x2)|
|x1-x2|
表示函数f(x)=sinx图象上任意两点之间的连线的斜率的绝对值
由于f′(x)=cosx∈[-1,1]
|f(x1)-f(x2)|
|x1-x2|
≤1
所以常数k的最小值为1
故答案为1

更多内容推荐