定义:若数列{An}满足An+1=An2,则称数列{An}为“平方递推数列”。已知数列{an}中,点(an,an+1)在函数f(x)=2x2+2x的图象上,其中,n为正整数,证明:数列{2an+1}是

题目简介

定义:若数列{An}满足An+1=An2,则称数列{An}为“平方递推数列”。已知数列{an}中,点(an,an+1)在函数f(x)=2x2+2x的图象上,其中,n为正整数,证明:数列{2an+1}是

题目详情

定义:若数列{An}满足An+1=An2,则称数列{An}为“平方递推数列”。已知数列{an}中,点(an,an+1)在函数f(x)=2x2+2x的图象上,其中,n为正整数,证明:数列{2an+1}是“平方递推数列”。
题型:证明题难度:中档来源: 同步题

答案

证明:由条件得:

是“平方递推数列”。

更多内容推荐