优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,E是PC的中点,作交PB于点F.(I)证明:PA∥平面EDB;(II)证明:PB⊥平面EFD;-高三数学
如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,E是PC的中点,作交PB于点F.(I)证明:PA∥平面EDB;(II)证明:PB⊥平面EFD;-高三数学
题目简介
如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,E是PC的中点,作交PB于点F.(I)证明:PA∥平面EDB;(II)证明:PB⊥平面EFD;-高三数学
题目详情
如图,在四棱锥
中,底面
ABCD
是正方形,侧棱
底面
ABCD
,
,
E
是
PC
的中点,作
交
PB
于点
F
.
(I) 证明:
PA
∥平面
EDB
;
(II) 证明:
PB
⊥平面
EFD
;
题型:解答题
难度:中档
来源:不详
答案
(1)结合线面的判定定理,根据题意得到PA∥EO是解题的关键一步
(2)根据已知的线面垂直可知PD⊥底面ABCD且DC⊂底面ABCD,∴PD⊥DC
,同时可知同样由PD⊥底面ABCD,得PD⊥BC.进而推理得到BC⊥平面PDC.结合判定定理得到证明。
试题分析:解:(1)证明:连接AC,AC交BD于O,连接EO.
∵底面ABCD是正方形,∴点O是AC的中点
在△PAC中,EO是中位线,∴PA∥EO
而EO⊂平面EDB且PA⊄平面EDB,
所以,PA∥平面EDB
(2)证明:
∵PD⊥底面ABCD且DC⊂底面ABCD,∴PD⊥DC
∵PD=DC,可知△PDC是等腰直角三角形,而DE是斜边PC的中线,
∴DE⊥PC.①
同样由PD⊥底面ABCD,得PD⊥BC.
∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC.
而DE⊂平面PDC,∴BC⊥DE.②
由①和②推得DE⊥平面PBC
而PB⊂平面PBC,∴DE⊥PB
又EF⊥PB且DE∩EF=E,所以PB⊥平面EFD.
点评:本小题考查直线与平面平行,直线与平面垂直,二面角等基础知识,考查空间想象能力和推理论证能力
上一篇 :
已知两个正四棱锥P-ABCD与Q-AB
下一篇 :
如图,与是均以为斜边的等腰直角
搜索答案
更多内容推荐
如图1,在直角梯形中,,,且.现以为一边向形外作正方形,然后沿边将正方形翻折,使平面与平面垂直,为的中点,如图2.(1)求证:∥平面;(2)求证:平面;(3)求点到平面的距离.图-高二数学
如图,四边形与均为菱形,,且.(1)求证:;(2)求证:;(3)求二面角的余弦值.-高二数学
(本小题共l2分)如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1=1,延长A1C1至点P,使C1P=A1C1,连接AP交棱CC1于D.(Ⅰ)求证:PB1∥平面BDA1;(
如图,边长为4的正方形与正三角形所在的平面相互垂直,且、分别为、中点.(1)求证:;(2)求直线与平面所成角的正弦值.-高三数学
在直角梯形PBCD中,,A为PD的中点,如下左图。将沿AB折到的位置,使,点E在SD上,且,如下图。(1)求证:平面ABCD;(2)求二面角E—AC—D的正切值.-高二数学
正方体的八个顶点中有4个顶点恰好是正四面体的顶点,则正方体的边长与正四面体的边长之比是______.-数学
如图,在△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且==λ(0<λ<1).(1)判断EF与平面ABC的位置关系并给予
如图,正方形与梯形所在的平面互相垂直,,∥,,点在线段上.(I)当点为中点时,求证:∥平面;(II)当平面与平面所成锐二面角的余弦值为时,求三棱锥的体积.-高三数学
(本小题满分12分)如图:在三棱锥D-ABC中,已知是正三角形,AB平面BCD,,E为BC的中点,F在棱AC上,且(1)求三棱锥D-ABC的表面积;(2)求证AC⊥平面DEF;(3)若M为BD的中点,
如图,正方体ABCD—A1B1C1D1棱长为8,E、F分别为AD1,CD1中点,G、H分别为棱DA,DC上动点,且EH⊥FG.(1)求GH长的取值范围;(2)当GH取得最小值时,求证:EH与FG共面;
已知是直线,是平面,给出下列命题:①若,,,则或.②若,,,则.③若m,n,m∥,n∥,则∥④若,且,,则其中正确的命题是()。A.①②B.②④C.②③D.③④-高二数学
如图,在三棱锥中,两两垂直,且.设点为底面内一点,定义,其中分别为三棱锥、、的体积.若,且恒成立,则正实数的取值范围是___________.-高二数学
如图,正方体中,,点为的中点,点在上,若平面,则________.-高三数学
(本小题满分12分)在直三棱柱中,AC=4,CB=2,AA1=2,,E、F分别是的中点。(1)证明:平面平面;(2)证明:平面ABE;(3)设P是BE的中点,求三棱锥的体积。-高三数学
(本题满分10分)如图:是⊙的直径,垂直于⊙所在的平面,是圆周上不同于的任意一点,(1)求证:平面.(2)图中有几个直角三角形.-高二数学
如图所示,正方体的棱长为1,O是平面的中心,则O到平面的距离是()A.B.C.D.-高二数学
如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.(Ⅰ)求证AM//平面BDE;(Ⅱ)求二面角A-DF-B的大小;(Ⅲ)试在线段AC上确定一点P,使得PF
正四棱锥P-ABCD的所有棱长都相等,则侧棱与底面所成的角为.-高二数学
如图,空间四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,且AB=AD,BC=DC.(1)求证:平面EFGH;(2)求证:四边形EFGH是矩形.-高二数学
(满分12分)如右图,在正三棱柱ABC—A1B1C1中,AA1=AB,D是AC的中点。(Ⅰ)求证:B1C//平面A1BD;(Ⅰ)求二面角A—A1B—D的余弦值。-高三数学
已知三个平面,若,且相交但不垂直,分别为内的直线,则()A.B.C.D.-高三数学
如图,在三棱锥P-ABC中,点P在平面ABC上的射影D是AC的中点.BC="2AC=8,AB"=(I)证明:平面PBC丄平面PAC(II)若PD=,求二面角A-PB-C的平面角的余
如图,在棱长为1的正方体中.⑴求异面直线与所成的角;⑵求证:平面平面.-高一数学
如图,四棱锥S—ABCD的底面为正方形,SD底面ABCD,则下列结论中正确的是(把正确的答案都填上)(1)AC⊥SB(2)AB∥平面SCD(3)SA与平面SBD所成的角等于SC与平面SBD所成的角(4
给出下列命题:①如果,是两条直线,且//,那么平行于经过的任何平面;②如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面;③若直线,是异面直线,直线,是异面直线,-高二数学
如图:在多面体EF-ABCD中,四边形ABCD是平行四边形,△EAD为正三角形,且平面EAD平面ABCD,EF∥AB,AB=2EF=2AD=4,.(Ⅰ)求证:BFAD;(Ⅱ)求直线BD与平面BCF所成
(本小题满分12分)如图,在三棱锥ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC且AB⊥BC,O为AC中点。(1)求直线A1C与平面A1AB所成角的正弦值;
如图,正四棱锥的所有棱长相等,E为PC的中点,则异面直线BE与PA所成角的余弦值是()A.B.C.D.-高二数学
(本小题13分)如图1,在三棱锥P—ABC中,平面ABC,,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示。(1)证明:平面PBC;(2)求三棱锥D—ABC的体积;(3)在的平分线上确定
如图,已知正方形的边长为1,平面,平面,为边上的动点。(1)证明:平面;(2)试探究点的位置,使平面平面。-高三数学
在空间直角坐标系中,点A(2,-1,1)关于平面xoy和z轴的对称点分别为A1和A2,则|A1A2|=()A.2B.4C.25D.26-数学
在三棱锥A=BCD中,AC⊥底面BCD,BD⊥DC,BD=DC,AC=a,∠ABC=30°,则D到平面ABC的距离是()A.a2B.22aC.32aD.62a-数学
已知一颗粒子等可能地落入如图所示的四边形ABCD内的任意位置,如果通过大量的实验发现粒子落入△BCD内的频率稳定在附近,那么点A和点C到直线BD的距离之比约为-高二数学
已知二面角α-l-β为,动点P.Q分别在面α.β内,P到β的距离为,Q到α的距离为,则P.Q两点之间距离的最小值为;-高三数学
设、是两条不同的直线,是一个平面,则下列命题正确的是()A.若,,则B.若,,则C.若,,则D.若,,则-高二数学
如图,在平行四边ABCD中,,,若将其沿BD折成直二面角A-BD-C,则三棱锥A—BCD的外接球的体积为_______.-高三数学
已知两个不同的平面、,能判定//的条件是()A.、分别平行于直线B.、分别垂直于直线C.、分别垂直于平面D.内有两条直线分别平行于-高二数学
(12分)如图,在直三棱柱中,,,为的中点.(1)求证:⊥平面;(2)设是上一点,试确定的位置,使平面⊥平面,并说明理由.-高三数学
如图,已知六棱锥P—ABCDEF的底面是正六边形,平面ABC,,给出下列结论:①;②平面平面PBC;③直线平面PAE;④;⑤直线PD与平面PAB所成角的余弦值为。其中正确的有(把所有正确的序-高二数学
(本小题满分12分)在边长为2的正方体中,E是BC的中点,F是的中点(1)求证:CF∥平面(2)求二面角的平面角的余弦值.-高二数学
(本小题12分)如图,在中,为边上的高,,沿将翻折,使得得几何体(Ⅰ)求证:;(Ⅱ)求点D到面ABC的距离。-高二数学
三棱柱的侧棱与底面边长都相等,在底面内的射影为的中心,则与底面所成角的正弦值等于()A.B.C.D.-高二数学
已知四棱锥的底面为直角梯形,,底面,且,,是的中点。(Ⅰ)证明:面面;(Ⅱ)求与所成的角的余弦值;(Ⅲ)求面与面所成二面角的余弦值。-高二数学
(12分)如图所示,以AB=4cm,BC=3cm的长方形ABCD为底面的长方体被平面斜着截断的几何体,EFGH是它的截面.当AE=5cm,BF=8cm,CG=12cm时,试回答下列问题:(1)求DH的
正三棱锥的底面边长为2,侧面均为直角三角形,则此棱锥的体积()A.B.C.D.-高一数学
如图一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。将△ABD沿边AB折起,使得△ABD与△ABC成直二面角,如图二,在二面角中.(1)求证:BD⊥AC;(2)求D、C之间的距离;(
如图:在多面体EF-ABCD中,四边形ABCD是平行四边形,△EAD为正三角形,且平面EAD平面ABCD,EF∥AB,AB=2EF=2AD=4,.(Ⅰ)求多面体EF-ABCD的体积;(Ⅱ)求直线BD与
已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形(1)求证:;(2)求证:;(3)设为中点,在边上找一点,使平面,并求的值.-高三数学
(本小题满分12分)如图,四棱锥中,底面是边长为2的正方形,,且,为中点.(1)求证:平面;(2)求二面角的余弦值.-高二数学
(本小题满分l2分)如图,在多面体ABCDEF中,ABCD为菱形,ABC=60,EC面ABCD,FA面ABCD,G为BF的中点,若EG//面ABCD.(1)求证:EG面ABF;(2)若AF=AB,求二
返回顶部
题目简介
如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,E是PC的中点,作交PB于点F.(I)证明:PA∥平面EDB;(II)证明:PB⊥平面EFD;-高三数学
题目详情
(I) 证明: PA∥平面EDB;
(II) 证明:PB⊥平面EFD;
答案
(2)根据已知的线面垂直可知PD⊥底面ABCD且DC⊂底面ABCD,∴PD⊥DC
,同时可知同样由PD⊥底面ABCD,得PD⊥BC.进而推理得到BC⊥平面PDC.结合判定定理得到证明。
试题分析:解:(1)证明:连接AC,AC交BD于O,连接EO.
∵底面ABCD是正方形,∴点O是AC的中点
在△PAC中,EO是中位线,∴PA∥EO
而EO⊂平面EDB且PA⊄平面EDB,
所以,PA∥平面EDB
(2)证明:
∵PD⊥底面ABCD且DC⊂底面ABCD,∴PD⊥DC
∵PD=DC,可知△PDC是等腰直角三角形,而DE是斜边PC的中线,
∴DE⊥PC.①
同样由PD⊥底面ABCD,得PD⊥BC.
∵底面ABCD是正方形,有DC⊥BC,∴BC⊥平面PDC.
而DE⊂平面PDC,∴BC⊥DE.②
由①和②推得DE⊥平面PBC
而PB⊂平面PBC,∴DE⊥PB
又EF⊥PB且DE∩EF=E,所以PB⊥平面EFD.
点评:本小题考查直线与平面平行,直线与平面垂直,二面角等基础知识,考查空间想象能力和推理论证能力