如图1,已知三角形ABC,求证:∠A+∠B+∠C=180°.分析:通过画平行线,将∠A、∠B、∠C作等角代换,使各角之和恰为一个平角,依辅助线不同而得多种证法.证法1:如图2,延长BC到D,过点-数学

题目简介

如图1,已知三角形ABC,求证:∠A+∠B+∠C=180°.分析:通过画平行线,将∠A、∠B、∠C作等角代换,使各角之和恰为一个平角,依辅助线不同而得多种证法.证法1:如图2,延长BC到D,过点-数学

题目详情

如图1,已知三角形ABC,求证:∠A+∠B+∠C=180°.
分析:通过画平行线,将∠A、∠B、∠C作等角代换,使各角之和恰为一个平角,依辅助线不同而得多种证法.

360优课网

证法1:如图2,延长BC到D,过点C画CEBA
∵BACE(作图所知)
∴∠B=______(两直线平行,同位角相等),
∠A=∠2  (______ ).
又∵∠BCD=∠BCA+∠2+∠1=180°(平角的定义)
∴∠A+∠B+∠ACB=180°(等量代换)
(1)请补全上述证明过程.
(2)如图3,过线段BC上任一点F(点B、C除外),画FHAC,FGAB,这种添加辅助线的方法也能证明∠A+∠B+∠C=180°.请完成说理过程.
证法2:如图3,过线段BC上任一点F(点B、C除外),画FHAC,FGAB.
题型:解答题难度:中档来源:不详

答案


360优课网
(1)证法1:如图2,延长BC到D,过点C画CEBA
∵BACE(作图所知)
∴∠B=∠1(两直线平行,同位角相等),
∠A=∠2(两直线平行,内错角相等).
又∵∠BCD=∠BCA+∠2+∠1=180°(平角的定义)
∴∠A+∠B+∠ACB=180°(等量代换).
故答案为:∠1;两直线平行,内错角相等;

(2)证法2:如图3,过线段BC上任一点F(点B、C除外),画FHAC,FGAB,
∴∠1=∠B,∠3=∠C,∠4=∠A,
∵FGAB,
∴∠2=∠4,
∴∠2=∠A,
∵∠1+∠2+∠3=180°,
∴∠A+∠B+∠C=180°.

更多内容推荐