如图所示,圆O是△ABC的外接圆,∠BAC与∠ABC的平分线相交于点I,延长AI交圆O于点D,连接BD、DC.(1)求证:BD=DC=DI;(2)若圆O的半径为10cm,∠BAC=120°,求△BDC

题目简介

如图所示,圆O是△ABC的外接圆,∠BAC与∠ABC的平分线相交于点I,延长AI交圆O于点D,连接BD、DC.(1)求证:BD=DC=DI;(2)若圆O的半径为10cm,∠BAC=120°,求△BDC

题目详情

如图所示,圆O是△ABC的外接圆,∠BAC与∠ABC的平分线相交于点I,延长AI交圆O于点D,连接BD、DC.
(1)求证:BD=DC=DI;
(2)若圆O的半径为10cm,∠BAC=120°,求△BDC的面积.
题型:解答题难度:中档来源:不详

答案

(1)证明:∵AI平分∠BAC,
∴∠BAD=∠DAC,
BD
=
DC

∴BD=DC.
∵BI平分∠ABC,
∴∠ABI=∠CBI.
∵∠BAD=∠DAC,∠DBC=∠DAC,
∴∠BAD=∠DBC.
又∵∠DBI=∠DBC+∠CBI,∠DIB=∠ABI+∠BAD,
∴∠DBI=∠DIB,
∴△BDI为等腰三角形,
∴BD=ID,
∴BD=DC=DI.

(2)当∠BAC=120°时,△ABC为钝角三角形,
∴圆心O在△ABC外.
连接OB、OD、OC.
∴∠DOC=∠BOD=2∠BAD=120°,
∴∠DBC=∠DCB=60°,
∴△BDC为正三角形.
∴OB是∠DBC的平分线,
延长CO交BD于点E,则OE⊥BD,
∴BE=class="stub"1
2
BD,
又∵OB=10,
∴BD=2OBcos30°=2×10×
3
2
=10
3

∴CE=BD•sin60°=10
3
×
3
2
=15,
∴S△BDC=class="stub"1
2
BD•CE=class="stub"1
2
×10
3
×15=75
3

答:△BDC的面积为75
3
cm2.

更多内容推荐