如图,AC=BC,∠ACB=90°,D为BC的中点,BE⊥BC,CE⊥AD,垂足分别为B、G,那么AD=CE,BD=BE.这个结论对不对?为什么?-数学

题目简介

如图,AC=BC,∠ACB=90°,D为BC的中点,BE⊥BC,CE⊥AD,垂足分别为B、G,那么AD=CE,BD=BE.这个结论对不对?为什么?-数学

题目详情

如图,AC=BC,∠ACB=90°,D为BC的中点,BE⊥BC,CE⊥AD,垂足分别为B、G,那么AD=CE,BD=BE.这个结论对不对?为什么?360优课网
题型:解答题难度:中档来源:不详

答案

这2个结论都是对的.理由:
∵∠ACB=90°,CE⊥AD,
∴∠ACB=∠EBC=90°,
∠GCD+∠ACG=90°,∠ACG+∠CAD=90°
∴∠ECB=∠CAD,而AC=BC,
∴△ACD≌Rt△CBE,
∴AD=CE,BD=BE.

更多内容推荐