⑴求数列的通项公式;⑵设,若对恒成立,求实数的取值范围;⑶是否存在以为首项,公比为的数列,,使得数列中每一项都是数列中不同的项,若存在,求出所有满足条件的数列的通项-高二数学

题目简介

⑴求数列的通项公式;⑵设,若对恒成立,求实数的取值范围;⑶是否存在以为首项,公比为的数列,,使得数列中每一项都是数列中不同的项,若存在,求出所有满足条件的数列的通项-高二数学

题目详情





⑴求数列的通项公式;
⑵设,若恒成立,求实数的取值范围;
⑶是否存在以为首项,公比为的数列,使得数列中每一项都是数列中不同的项,若存在,求出所有满足条件的数列的通项公式;若不存在,说明理由
题型:解答题难度:中档来源:不详

答案

(1) (2) (3)

⑴因为
所以.…………………………………………………………………………2分
因为,所以数列是以1为首项,公差为的等差数列.
所以.…………………………………………………………………………4分
⑵①当时,



.…………………………………………………………………………6分
②当时,


.…………………………………………8分
所以
要使恒成立,
只要使
只要使
故实数的取值范围为.……………………………………………………10分
⑶由,知数列中每一项都不可能是偶数.
①如存在以为首项,公比为2或4的数列
此时中每一项除第一项外都是偶数,故不存在以为首项,公比为偶数的数列.……………………………………………………………………………………12分
②当时,显然不存在这样的数列
时,若存在以为首项,公比为3的数列

所以满足条件的数列的通项公式为.……………………………16分

更多内容推荐