如图,已知四边形ABCD为⊙O的内接四边形,AB=AD,∠BCD=120°,当⊙O的半径为8cm时,求:△ABD的内切圆面积.-数学

题目简介

如图,已知四边形ABCD为⊙O的内接四边形,AB=AD,∠BCD=120°,当⊙O的半径为8cm时,求:△ABD的内切圆面积.-数学

题目详情

如图,已知四边形ABCD为⊙O的内接四边形,AB=AD,∠BCD=120°,当⊙O的半径为8cm时,求:△ABD的内切圆面积.360优课网
题型:解答题难度:中档来源:不详

答案


360优课网
∵AB=AD,
∴∠ABD=∠ADB,
∵∠BCD=120°,
∴∠ABD=∠ADB=60°,
∴△ABD是等边三角形;
连接OB,OD,过O作OE⊥BD于E,则∠OBD=30°;
∵OB=8cm,
∴OE=4cm,
∴△ABD的内切圆面积=16π.

更多内容推荐