优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> 一次函数y=﹣x+1与反比例函数y=﹣,x与y的对应值如下表:﹣3﹣2﹣1123y=ax+b4320﹣1﹣2y=﹣12﹣2﹣1﹣方程﹣x+1=﹣的解为;不等式﹣x+1>﹣的解集为.-八年级数学
一次函数y=﹣x+1与反比例函数y=﹣,x与y的对应值如下表:﹣3﹣2﹣1123y=ax+b4320﹣1﹣2y=﹣12﹣2﹣1﹣方程﹣x+1=﹣的解为;不等式﹣x+1>﹣的解集为.-八年级数学
题目简介
一次函数y=﹣x+1与反比例函数y=﹣,x与y的对应值如下表:﹣3﹣2﹣1123y=ax+b4320﹣1﹣2y=﹣12﹣2﹣1﹣方程﹣x+1=﹣的解为;不等式﹣x+1>﹣的解集为.-八年级数学
题目详情
一次函数y=﹣x+1与反比例函数y=﹣
,x与y的对应值如下表:
﹣3 ﹣2 ﹣1 1 2 3
y=ax+b 4 3 2 0 ﹣1 ﹣2
y=﹣
1 2 ﹣2 ﹣1 ﹣
方程﹣x+1=﹣
的解为
;不等式﹣x+1>﹣
的解集为
.
题型:填空题
难度:中档
来源:不详
答案
x1=﹣1,x2=2 x<﹣1或0<x<2
试题分析:当两个函数的值相等时的x的值即为方程﹣x+1=﹣
的解;从表格中得出两个函数的增减性,即可得出不等式﹣x+1>﹣
的解集.
解:根据表可以得到当x=﹣1,或2时,两个函数的值相等,
∴方程﹣x+1=﹣
的解为:x1=﹣1,x2=2;
一次函数y=﹣x+1的y随x的增大而减小,
反比例函数y=﹣
,在每个象限中y随x的增大而增大,
∴不等式﹣x+1>﹣
的解集为x<﹣1或0<x<2.
故本题答案为:x1=﹣1,x2=2;x<﹣1或0<x<2.
点评:本题主要考查了一次函数与反比例函数的性质,根据图象来解决是本题的关键.
上一篇 :
已知双曲线,的部分图象如图所示
下一篇 :
若y与x1成正比例,x1与x2成反比
搜索答案
更多内容推荐
反比例函数y1=与一次函数y2=﹣x+b的图象交于点A(2,3)和点B(m,2).由图象可知,对于同一个x,若y1>y2,则x的取值范围是_________.-八年级数学
如图,反比例函数()与长方形在第一象限相交于、两点,,,连结、、.记、的面积分别为、.(Ⅰ)①点坐标为;②(填“>”、“<”、“=”);(Ⅱ)当点为线段的中点时,求的值及点坐标-八年级数学
在函数的图象上有三个点的坐标分别为,函数值的大小关系是.(用“<”符号连接)-八年级数学
如图,设直线y=kx(k<0)与双曲线y=﹣相交于A(x1,y1)B(x2,y2)两点,则x1y2﹣3x2y1的值为()A.﹣10B.﹣5C.5D.10-八年级数学
如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y=B.y=C.y=D.y=-八年级数学
已知直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点,则x1y2+x2y1的值为()A.﹣6B.﹣9C.0D.9-八年级数学
已知:y=y1-y2,y1与x成正比例,y2与x成反比例;当x=1时,y=0;当x=2时,y=3,求:(1)y与x之间的函数关系式;(2)当x=6时,y的值。-八年级数学
若双曲线在每个象限中都随着增大而减小,则的值可以是。(仅写一个)-九年级数学
已知点P(-1,4)在反比例函数的图像上,则k的值是()A.B.C.4D.-4-九年级数学
已知一次函数y=3x+m与反比例函数y=的图象有两个交点,当m=时,有一个交点的纵坐标为6.-八年级数学
已知,y3=1÷(1﹣y2),y4=1÷(1﹣y3),…,yn=1÷(1﹣yn﹣1).则写出y与x的关系式:y4=,由此可得y2011=.-八年级数学
已知一个反比例函数的图象经过点.(Ⅰ)求这个函数的解析式;(Ⅱ)判断点是否在这个函数的图象上;(Ⅲ)当时,求自变量的值.-八年级数学
如图,双曲线y=的一个分支为()A.①B.②C.③D.④-八年级数学
已知点A(-2,y)、B(-1,y)、C(3,y)都在反比例函数y=的图象上,则()A.y<y<yB.y<y<yC.y<y<yD.y<y<y-八年级数学
若正比例函数y=﹣2x与反比例函数y=图象的一个交点坐标为(﹣1,2),则另一个交点的坐标为()A.(2,﹣1)B.(1,﹣2)C.(﹣2,﹣1)D.(﹣2,1)-八年级数学
心理学家研究发现,在一节45分钟的课中,学生的注意力随教师讲课的时间的变化而变化,开始学生的注意力逐渐增强,中间学生的注意力保持稳定的状态,随后开始分散,经实验学生-八年级数学
已知y=y1﹣y2,且y1与x的算术平方根成正比例,y2与x的平方成反比例,当x=1时,y=0;x=2时,y=,求y关于x的表达式.-八年级数学
已知变量y与2x成反比例,且当x=2时,y=6,(1)求y与x之间的函数关系.(2)请判断点B(3,4)是否在这个反比例函数的图象上,并说明理由.-八年级数学
若A(a1,b1),B(a2,b2)是反比例函数y=–图象上的两点,且a1<a2,则b1与b2的大小关系是A.b1<b2B.b1=b2C.b1>b2D.不能确定-八年级数学
经过点A(1,2)的反比例函数解析式是___________________-九年级数学
若直线y=kx(k>0)与双曲线的图象交于A(x1,y1)、B(x2,y2)两点,则2x1y2+3x2y1=.-八年级数学
已知正比例函数y=kx与反比例函数y=相交于点A(1,b)、点B(c,﹣2),求k+a的值.甲同学说:未知数太多,很难求的;乙同学说:可能不是用待定系数法来求;丙说:如果用数形结合的方法-八年级数学
如图,点为反比例函数图象上一点,长方形的面积为3,则这个反比例函数解析式为.-八年级数学
如图,点M是反比例函数()图象上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为()A.1B.2C.4D.不能确定-九年级数学
如果函数y=kxk﹣2是反比例函数,那么k=,此函数的解析式是.-八年级数学
已知函数y=mx与在同一直角坐标系中的图象大致如图,则下列结论正确的是()A.m>0,n>0B.m>0,n<0C.m<0,n>0D.m<0,n<0-八年级数学
已知a>b,且a≠0,b≠0,a+b≠0,则函数y=ax+b与在同一坐标系中的图象不可能是()A.B.C.D.-八年级数学
(2011•恩施州)一次函数y1=k1x+b和反比例函数(k1∙k2≠0)的图象如图所示,若y1>y2,则x的取值范围是()A.﹣2<x<0或x>1B.﹣2<x<1C.x<﹣2或x>1D.x<﹣2或0
两个反比例函数,在第一象限内的图象,如图,点P1,P2,P3,…,P2005在反比例函数图象上,它们的横坐标分别为x1,x2,x3,…,x2005,纵坐标分别为1,3,5,…,共2005个连续奇-八年
已知反比例函数的图象经过点(2,6),当x<0时,y随x的增大而.-八年级数学
如图1,已知双曲线与直线交于A,B两点,点A在第一象限.试解答下列问题:⑴若点A的坐标为(3,1),则点B的坐标为;⑵当x满足:时,;⑶过原点O作另一条直线l,交双曲线于P,Q两点,点-八年级数学
如图,直线y=kx(k>0)与双曲线交于A(x1,y1),B(x2,y2)两点,则2x1y2-7x2y1的值等于__________-八年级数学
)直线y=﹣x﹣1与反比例函数(x<0)的图象交于点A,与x轴相交于点B,过点B作x轴垂线交双曲线于点C,若AB=AC,则k的值为()A.﹣2B.﹣4C.﹣6D.﹣8-八年级数学
下列等式中,y是x的反比例函数的是()A.y=x2B.y=4xC.y=6x+1D.xy=1-数学
函数y=(12m-1)x3-m是反比例函数.(1)求m的值,并写出函数表达式.(2)若点(2,y1),(3,y2)在反比例函数的图象上,比较y1与y2的大小.-数学
若反比例函数y=(2k-1)x3k2-2k-1的图象位于二、四象限,则k=______.-数学
如图,矩形的对角线经过坐标原点,矩形的边分别平行于坐标轴,点在反比例函数的图象上.若点的坐标为,则的值为.-九年级数学
若反比例函数的图象经过点(2,-3),则图象必经过另一点()A.(2,3)B.(-2,3)C.(3,2)D.(-2,-3)-九年级数学
反比例函数y=的图象经过点A(-1,2)、B(-3,n),则n=.-九年级数学
如图,已知点P(a,b)、Q(b,c)是反比例函数y=在第一象限内的点,求的值.-八年级数学
在式子:①y=3x;②y=;③;④xy=3中,y是x的反比例函数的是.-八年级数学
(2011•淮安)如图,反比例函数的图象经过点A(﹣1,﹣2).则当x>1时,函数值y的取值范围是()A.y>1B.0<y<lC.y>2D.0<y<2-八年级数学
函数的自变量的取值范围是.-九年级数学
如图所示,点、、在轴上,且,分别过点、、作轴的平行线,与反比例函数的图像分别交于点、、,分别过点、、作轴的平行线,分别与轴交于点、、,连接、、,那么图中阴影部分的面-九年级数学
已知k1<0<k2,则函数y=k1x和的图象大致是()A.B.C.D.-八年级数学
如图,直线y=﹣x+b与双曲线交于点A、B,则不等式组的解集为()A.﹣1<x<0B.x<﹣1或x>2C.﹣1<x≤1D.﹣1<x<1-八年级数学
已知点(x1,-1),(x2,2),(x3,4),在函数y=(<0)的图象上,则x1,x2,x3从小到大排列为(用“<”号连接).-八年级数学
若反比例函数的图象在每一个象限中,y随着x的增大而减小,则m的取值范围是___________.-八年级数学
反比例函数y=的图象与一次函数y=mx+b的图象交于两点A(1,3),B(,-1).当x取何值时,一次函数的值大于反比例函数的值……()A.B.C.D.-八年级数学
如图,已知:双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为,求点C的坐标.-九年级数学
返回顶部
题目简介
一次函数y=﹣x+1与反比例函数y=﹣,x与y的对应值如下表:﹣3﹣2﹣1123y=ax+b4320﹣1﹣2y=﹣12﹣2﹣1﹣方程﹣x+1=﹣的解为;不等式﹣x+1>﹣的解集为.-八年级数学
题目详情
﹣3 ﹣2 ﹣1 1 2 3
y=ax+b 4 3 2 0 ﹣1 ﹣2
y=﹣
方程﹣x+1=﹣
答案
试题分析:当两个函数的值相等时的x的值即为方程﹣x+1=﹣
解:根据表可以得到当x=﹣1,或2时,两个函数的值相等,
∴方程﹣x+1=﹣
一次函数y=﹣x+1的y随x的增大而减小,
反比例函数y=﹣
∴不等式﹣x+1>﹣
故本题答案为:x1=﹣1,x2=2;x<﹣1或0<x<2.
点评:本题主要考查了一次函数与反比例函数的性质,根据图象来解决是本题的关键.