设函数f(x)=x2+|x-2|-1,x∈R.(1)判断函数f(x)的奇偶性;(2)求函数f(x)的最小值.-数学

题目简介

设函数f(x)=x2+|x-2|-1,x∈R.(1)判断函数f(x)的奇偶性;(2)求函数f(x)的最小值.-数学

题目详情

设函数f(x)=x2+|x-2|-1,x∈R.
(1)判断函数f(x)的奇偶性;
(2)求函数f(x)的最小值.
题型:解答题难度:中档来源:不详

答案

(1)f(x)=
x2+x-3 x≥2
x2-x+1,x<2.

若f(x)奇函数,则f(-x)=-f(x)所以f(0)=-f(0),即f(0)=0.
∵f(0)=1≠0,
∴f(x)不是R上的奇函数.
又∵f(1)=1,f(-1)=3,f(1)≠f(-1),
∴f(x)不是偶函数.
故f(x)是非奇非偶的函数.
(2)当x≥2时,f(x)=x2+x-3,为二次函数,对称轴为直线x=-class="stub"1
2

则f(x)为[2,∞)上的增函数,此时f(x)min=f(2)=3.
当x<2时,f(x)=x2-x+1,为二次函数,对称轴为直线x=class="stub"1
2

则f(x)在(-∞,class="stub"1
2
)上为减函数,在[class="stub"1
2
,2)上为增函数,
此时f(x)min=f(class="stub"1
2
)=class="stub"3
4

综上,f(x)min=class="stub"3
4

更多内容推荐