设函数f(x)的定义域为R,对任意x1,x2有f(x1)+f(x2)=2f(x1+x22)•f(x1-x22),且f(π2)=0,f(π)=-1.(1)求f(0)的值;(2)求证:f(x)是偶函数,且

题目简介

设函数f(x)的定义域为R,对任意x1,x2有f(x1)+f(x2)=2f(x1+x22)•f(x1-x22),且f(π2)=0,f(π)=-1.(1)求f(0)的值;(2)求证:f(x)是偶函数,且

题目详情

设函数f(x)的定义域为R,对任意x1,x2f(x1)+f(x2)=2f(
x1+x2
2
)•f(
x1-x2
2
)
,且f(
π
2
)=0
,f(π)=-1.
(1)求f(0)的值;
(2)求证:f(x)是偶函数,且f(π-x)+f(x)=0;
(3)若-
π
2
<x<
π
2
时,f(x)>0,求证:f(x)在(0,π)上单调递减.
题型:解答题难度:中档来源:不详

答案

(1)令x1=x2=π,可得2f(π)=2f(π)f(0),
∵f(π)=-1,
∴得f(0)=1.
(2)令x1=x,x2=-x,可得f(x)+f(-x)=2f(x)•f(0)
∵f(0)=1∴f(x)=f(-x)
∴f(x)是偶函数;
令x1=π,x2=0,可得f(π)+f(0)=2f(class="stub"π
2
)f(class="stub"π
2
)

又∵f(0)=1,f(π)=-1∴f(0)+f(π)=0
∴得f(class="stub"π
2
)=0

x1=x, x2=π-x,可得f(x)+f(π-x)=2f(class="stub"π
2
)f(class="stub"2x-π
2
)=0

∴f(π-x)+f(x)=0.
(3)任取x1,x2∈(0,π),且x1<x2
f(x1)-f(x2)=f(x1)+f(π-x2)=2f(
x1-x2
2
)•f(
x1+x2
2
)

∵x1,x2∈(0,π)∴0<
x1-x2
2
<class="stub"π
2
-class="stub"π
2
x1+x2
2
<class="stub"π
2

由题意知-class="stub"π
2
<x<class="stub"π
2
时,f(x)>0,
f(
x1-x2
2
)>0
f(
x 1x2
2
)>0

故f(x1)-f(x2)>0
∴f(x)在(0,π)上单调递减.

更多内容推荐