某次国际象棋友谊赛在中国队和乌克兰队之间举行,比赛采用积分制,比赛规则规定赢一局得2分,平一局得1分,输一局得0分,根据以往战况,每局中国队赢的概率为,乌克兰队赢的-高三数学

题目简介

某次国际象棋友谊赛在中国队和乌克兰队之间举行,比赛采用积分制,比赛规则规定赢一局得2分,平一局得1分,输一局得0分,根据以往战况,每局中国队赢的概率为,乌克兰队赢的-高三数学

题目详情

某次国际象棋友谊赛在中国队和乌克兰队之间举行,比赛采用积分制,比赛规则规定赢一局得2分,平一局得1分,输一局得0分,根据以往战况,每局中国队赢的概率为,乌克兰队赢的概率为,且每局比赛输赢互不影响。若中国队第n局的得分记为an,令Sn=a1+a2+…+an
(1)求S3=4的概率;
(2)若规定:当其中一方的积分达到或超过4分时,比赛不再继续,否则,继续进行。设随机变量ξ表示此次比赛共进行的局数,求ξ的分布列及数学期望。
题型:解答题难度:中档来源:0117 月考题

答案

解:(1)
(2)ξ的可能取值为2,3,4,
∴ξ的分布列为

ξ

2

3

4

P

更多内容推荐