从装有个球(其中个白球,1个黑球)的口袋中取出个球,共有种取法,这种取法可分成两类:一类是取出的个球中,没有黑球,有种取法,另一类是取出的个球中有一个是黑球,有种取法-高三数学

题目简介

从装有个球(其中个白球,1个黑球)的口袋中取出个球,共有种取法,这种取法可分成两类:一类是取出的个球中,没有黑球,有种取法,另一类是取出的个球中有一个是黑球,有种取法-高三数学

题目详情

从装有个球(其中个白球,1个黑球)的口袋中取出个球,共有种取法,这种取法可分成两类:一类是取出的个球中,没有黑球, 有种取法,另一类是取出的个球中有一个是黑球,有种取法,由此可得等式:+=.则根据上述思想方法,当1£k<m<n,k, m, nÎN时,化简·          
题型:填空题难度:偏易来源:不详

答案

Cn+km
在Ck0•Cnm+Ck1•Cnm-1+Ck2•Cnm-2+…+Ckk•Cnm-k中,从第一项到最后一项分别表示:从装有n个白球,k个黑球的袋子里,取出m个球的所有情况取法总数的和,故答案应为:从从装有n+k球中取出m个球的不同取法数Cn+km,故答案为:Cn+km

更多内容推荐