已知n是正偶数,用数学归纳法证明时,若已假设n=k(k≥2且为偶数)时命题为真,则还需证明()A.n=k+1时命题成立B.n=k+2时命题成立C.n=2k+2时命题成立D.n=2(k+2)时命题成立-

题目简介

已知n是正偶数,用数学归纳法证明时,若已假设n=k(k≥2且为偶数)时命题为真,则还需证明()A.n=k+1时命题成立B.n=k+2时命题成立C.n=2k+2时命题成立D.n=2(k+2)时命题成立-

题目详情

已知n是正偶数,用数学归纳法证明时,若已假设n=k(k≥2且为偶数)时命题为真,则还需证明(  )
A.n=k+1时命题成立
B.n=k+2时命题成立
C.n=2k+2时命题成立
D.n=2(k+2)时命题成立
题型:单选题难度:偏易来源:不详

答案

B
因n是正偶数,故只需证等式对所有偶数都成立,因k的下一个偶数是k+2,故选B.

更多内容推荐