已知m,n为正整数。(1)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx;(2)对于n≥6,已知,求证:,m=1,2…,n;(3)求出满足等式3n+4n+…+(n+2)n=(n+3)n的所有正

题目简介

已知m,n为正整数。(1)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx;(2)对于n≥6,已知,求证:,m=1,2…,n;(3)求出满足等式3n+4n+…+(n+2)n=(n+3)n的所有正

题目详情

已知m,n为正整数。
(1)用数学归纳法证明:当x>-1时,(1+x)m≥1+mx;
(2)对于n≥6,已知,求证:,m=1,2…,n;
(3)求出满足等式3n+4n+…+(n+2)n=(n+3)n的所有正整数n。
题型:解答题难度:偏难来源:湖北省高考真题

答案

解:(1)用数学归纳法证明:
(i)当时,原不等式成立;
时,左边,右边
因为
所以左边≥右边,原不等式成立;
(ii)假设当时,不等式成立,即
则当时,


于是在不等式两边同乘以得,

所以
即当时,不等式也成立
综合(i)(ii)知,对一切正整数,不等式都成立。
(2)当时,由(1)得

于是
(3)解:由(2),当时,



即当时,不存在满足该等式的正整数n
故只需要讨论的情形:
时,,等式不成立;
时,,等式成立;
时,,等式成立;
时,为偶数,而为奇数,
,等式不成立;
时,同的情形可分析出,等式不成立
综上,所求的n只有

更多内容推荐