如图①,在矩形ABCD中,AB=10cm,BC=8cm,点P从A出发,沿A→B→C→D路线运动,到D停止;点Q从D出发,沿D→C→B→A路线运动,到A停止.若点P、点Q同时出发,点P的速度为每秒1cm

题目简介

如图①,在矩形ABCD中,AB=10cm,BC=8cm,点P从A出发,沿A→B→C→D路线运动,到D停止;点Q从D出发,沿D→C→B→A路线运动,到A停止.若点P、点Q同时出发,点P的速度为每秒1cm

题目详情

如图①,在矩形ABCD中,AB=10cm,BC=8cm,点P从A出发,沿A→B→C→D路线运动,到D停止;点Q从D出发,沿D→C→B→A路线运动,到A停止.若点P、点Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每秒bcm,点Q的速度变为每秒dcm.图②是点P出发x秒后△APD的面积S1(cm2)与x(秒)的函数关系图象;图③是点Q出发x秒后△AQD的面积S2(cm2)与x(秒)的函数关系图象.
(1)参照图②,求a、b及图②中的c值;
(2)求d的值;
(3)设点P离开点A的路程为y1(cm),点Q到点A还需走的路程为y2(cm),
请分别写出动点P、Q改变速度后y1、y2与出发后的运动时间x(秒)的函数关系式,并求出P、Q相遇时x的值.
(4)当点Q出发多少秒时,点P、点Q在运动路线上相距的路程为25cm.
题型:解答题难度:中档来源:重庆市期末题

答案

 解:(1)观察图②得S△APD=PA·AD=×a×8=24,
 ∴a=6(秒), (厘米/秒), (秒);  
(2)依题意得(22﹣6)d=28﹣12, 解得d=1(厘米/秒);  
(3)y1=6+2(x﹣6)=2x﹣6,
y2=28﹣[12+1×(x﹣6)]=22﹣x,
依题意得2x﹣6=22﹣x,
∴x=(秒);  
(4)当点Q出发17秒时,点P到达点D停止运动,点Q还需运动2秒, 即共运动19秒时,可使P、Q这两点在运动路线上相距的路程为25cm. 点Q出发1s,则点P,Q相距25cm,设点Q出发x秒,点P、点Q相距25cm,则2x+x=28﹣25,解得x=1.

更多内容推荐