给出下列四个命题:①若|x-lgx|<x+|lgx|成立,则x>1;②抛物线y=2x2的焦点坐标是(12,0);③已知|a|=|b|=2,a与b的夹角为π3,则a+b在a上的投影为3;④已知f(x)=

题目简介

给出下列四个命题:①若|x-lgx|<x+|lgx|成立,则x>1;②抛物线y=2x2的焦点坐标是(12,0);③已知|a|=|b|=2,a与b的夹角为π3,则a+b在a上的投影为3;④已知f(x)=

题目详情

给出下列四个命题:
①若|x-lgx|<x+|lgx|成立,则x>1;
②抛物线y=2x2的焦点坐标是(
1
2
,0)

③已知|
a
|=|
b
|=2
a
b
的夹角为
π
3
,则
a
+
b
a
上的投影为3;
④已知f(x)=asinx-bcosx,(a,b∈R)在x=
π
4
处取得最小值,则f(
2
-x)=-f(x)
;.
其中正确命题的序号是______.
题型:填空题难度:中档来源:不详

答案

当0<x<1时,|x-lgx|=x+|lgx|;
当x=1时,|x-lgx|=x+|lgx|;
当x>1时,|x-lgx|<x+|lgx|.
∴若|x-lgx|<x+|lgx|成立,则x>1,即①成立;
∵抛物线y=2x2的焦点坐标是(0,class="stub"1
8
),∴②不成立;
a
+
b
a
上的投影=|
a
|+|
b
| cosclass="stub"π
3
=2+2×class="stub"1
2
=3,∴③成立;
f(x)=asinx-bcosx,(a,b∈R)在x=class="stub"π
4
处取得最小值,则f(class="stub"3π
2
-x)=-f(x)
,即④成立.
故答案为:①③④.

更多内容推荐