设a,b,c∈R,有下列命题:①若a>0,则f(x)=ax+b在R上是单调函数;②若f(x)=ax+b在R上是单调函数,则a>0;③若b2-4ac<0,则a3+ab+c≠0;④若a3+ab+c≠0,则

题目简介

设a,b,c∈R,有下列命题:①若a>0,则f(x)=ax+b在R上是单调函数;②若f(x)=ax+b在R上是单调函数,则a>0;③若b2-4ac<0,则a3+ab+c≠0;④若a3+ab+c≠0,则

题目详情

设a,b,c∈R,有下列命题:
①若a>0,则f(x)=ax+b在R上是单调函数;
②若f(x)=ax+b在R上是单调函数,则a>0;
③若b2-4ac<0,则 a3+ab+c≠0;
④若a3+ab+c≠0,则b2-4ac<0.
其中,真命题的序号是______.
题型:填空题难度:中档来源:嘉兴二模

答案

对于①,根据一次函数的性质可知,若a>0,则f(x)=ax+b在R上是单调函数是真命题;
对于②,若f(x)=ax+b在R上是单调函数,则a>0或a<0,故是假命题;
对于③,若b2-4ac<0,关于x的方程ax2+bx+c=0没有实根,从而当x=a时有a3+ab+c≠0,故是真命题;
对于④,若a3+ab+c≠0,则b2-4ac<0不一定成立,如取a=0,b=1,c=1时,a3+ab+c=2≠0,但是b2-4ac=1>0.故是假命题.
故答案为:①③

更多内容推荐