已知函数f(x)=(x2+ax+2)ex,(x,a∈R).(1)当a=0时,求函数f(x)的图象在点A(1,f(1))处的切线方程;(2)若函数y=f(x)为单调函数,求实数a的取值范围;(3)当时,

题目简介

已知函数f(x)=(x2+ax+2)ex,(x,a∈R).(1)当a=0时,求函数f(x)的图象在点A(1,f(1))处的切线方程;(2)若函数y=f(x)为单调函数,求实数a的取值范围;(3)当时,

题目详情

已知函数f(x)=(x2+ax+2)ex,(x,a∈R).
(1)当a=0时,求函数f(x)的图象在点A(1,f(1))处的切线方程;
(2)若函数y=f(x)为单调函数,求实数a的取值范围;
(3)当时,求函数f(x)的极小值.
题型:解答题难度:偏易来源:不详

答案

(1) 5ex-y-2e="0" (2) [-2,2] (3)

试题分析:f′(x)=ex[x2+(a+2)x+a+2]
(1)当a=0时,f(x)=(x2+2)ex,f′(x)=ex(x2+2x+2),f(1)=3e,
f′(1)=5e,
∴函数f(x)的图象在点A(1,f(1))处的切线方程为y-3e=5e(x-1),即5ex-y-2e=0.
(2)f′(x)=ex[x2+(a+2)x+a+2],
考虑到ex>0恒成立且x2系数为正.
∴f(x)在R上单调等价于x2+(a+2)x+a+2≥0恒成立.
∴(a+2)2-4(a+2)≤0.
解得-2≤a≤2,即a的取值范围是[-2,2],
(3)当时,f(x)=,
f′(x)=
令f′(x)=0,得或x=1.
令f′(x)>0,得或x>1.
令f′(x)<0,得
x,f′(x),f(x)的变化情况如下表

所以,函数f(x)的极小值为
点评:注意极值与最值的区别和联系:最大值是极值与边界值中最大的函数值,最小值是极值与边界值中最小的函数值

更多内容推荐