已知数列{an}的前n项和Sn=-an-(12)n-1+2(n为正整数).(1)求数列{an}的通项公式;(2)令cn=n+1nan,Tn=c1+c2+…+cn,求Tn的值.-数学

题目简介

已知数列{an}的前n项和Sn=-an-(12)n-1+2(n为正整数).(1)求数列{an}的通项公式;(2)令cn=n+1nan,Tn=c1+c2+…+cn,求Tn的值.-数学

题目详情

已知数列{an}的前n项和Sn=-an-(
1
2
)n-1+2
(n为正整数).
(1)求数列{an}的通项公式;
(2)令cn=
n+1
n
an
,Tn=c1+c2+…+cn,求Tn的值.
题型:解答题难度:中档来源:不详

答案

(1)在Sn=-an-(class="stub"1
2
)n-1+2
中,
令n=1,可得S1=-a1-1+2=a1,
a1=class="stub"1
2

当n≥2时,Sn-1=-an-1-(class="stub"1
2
)n-2+2

an=Sn-Sn-1=-an+an-1+(class="stub"1
2
)n-1

2an=an-1+(class="stub"1
2
)n-1,即2nan=2n-1an-1+1

∵bn=2nan,∴bn=bn-1+1,
即当n≥2时,bn-bn-1=1.
又b1=2a1=1,
∴数列{bn}是首项和公差均为1的等差数列.
于是bn=1+(n-1)•1=n=2nan,
an=class="stub"n
2n

(2)由(1)得cn=class="stub"n+1
n
an=(n+1)(class="stub"1
2
)n

所以Tn=2×class="stub"1
2
+3×(class="stub"1
2
)2+4×(class="stub"1
2
)3+…+(n+1)(class="stub"1
2
)n
class="stub"1
2
Tn=2×(class="stub"1
2
)2+3×(class="stub"1
2
)3+4×(class="stub"1
2
)4+…+(n+1)(class="stub"1
2
)n+1

由①-②得class="stub"1
2
Tn=1+(class="stub"1
2
)2+(class="stub"1
2
)3+…+(class="stub"1
2
)n-(n+1)(class="stub"1
2
)n+1

=1+
class="stub"1
4
[1-(class="stub"1
2
)
n-1
]
1-class="stub"1
2
-(n+1)(class="stub"1
2
)n+1=class="stub"3
2
-class="stub"n+3
2n+1
Tn=3-class="stub"n+3
2n

更多内容推荐