优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> .(本小题满分12分)已知函数,是常数)在x=e处的切线方程为,既是函数的零点,又是它的极值点.(1)求常数a,b,c的值;(2)若函数在区间(1,3)内不是单调函数,求实数m的取值范围;-高三数学
.(本小题满分12分)已知函数,是常数)在x=e处的切线方程为,既是函数的零点,又是它的极值点.(1)求常数a,b,c的值;(2)若函数在区间(1,3)内不是单调函数,求实数m的取值范围;-高三数学
题目简介
.(本小题满分12分)已知函数,是常数)在x=e处的切线方程为,既是函数的零点,又是它的极值点.(1)求常数a,b,c的值;(2)若函数在区间(1,3)内不是单调函数,求实数m的取值范围;-高三数学
题目详情
.(本小题满分12分)
已知函数
,
是常数)在x=e处的切线方程为
,
既是函数
的零点,又是它的极值点.
(1)求常数a,b,c的值;
(2)若函数
在区间(1,3)内不是单调函数,求实数m的取值范围;
(3)求函数
的单调递减区间,并证明:
题型:解答题
难度:偏易
来源:不详
答案
(1)
,
,
(2)
(3)
, 证明:当
时,
即
对一切
都成立,亦即
对一切
都成立, 所以
,
,
,…
, 所以有
,
所以
.
试题分析:(1)由
知,
的定义域为
,
,
又
在
处的切线方程为
,所以有
,①
由
是函数
的零点,得
,②
由
是函数
的极值点,得
,③
由①②③,得
,
,
.
(2)由(1)知
,
因此,
,所以
.
要使函数
在
内不是单调函数,则函数
在
内一定有极值,而
,所以函数
最多有两个极值.
令
.
(ⅰ)当函数
在
内有一个极值时,
在
内有且仅有一个根,即
在
内有且仅有一个根,又因为
,当
,即
时,
在
内有且仅有一个根
,当
时,应有
,即
,解得
,所 以有
.
(ⅱ)当函数
在
内有两个极值时,
在
内有两个根,即二次函
数
在
内有两个不等根,所以
解得
.
综上,实数
的取值范围是
.
(3)由
,得
,
令
,得
,即
的单调递减区间为
.
由函数
在
上单调递减可知,
当
时,
,即
,
亦即
对一切
都成立,
亦即
对一切
都成立,
所以
,
,
,
…
,
所以有
,
所以
.
点评:本题第一问题型基础简单,第二问需要分情况讨论,对学生有一定的难度,第三问需要借助于单调性求出最值进而转化为恒成立的不等式,难度大
上一篇 :
已知二次函数y=f(x)(x∈R)的图象过
下一篇 :
已知是定义在上的单调函数,且对
搜索答案
更多内容推荐
已知函数在区间上是增函数,则的范围是A.B.C.D.-高一数学
函数的图象如图所示,其中为常数,则下列结论正确的是A.B.C.D.-高一数学
若定义运算(*b)=则函数()的值域是()A.(0,1]B.[1,+∞)C.(0.+∞)D.(-∞,+∞)-高三数学
若定义上的函数满足:对于任意且当时有,若的最大值、最小值分别为M,N,M+N等于()A.2011B.2012C.4022D.4024-高三数学
(本题满分14分)已知函数(1)(2)-高一数学
(本小题满分12分)探究函数的最小值,并确定取得最小值时x的值.列表如下:x…0.511.51.71.922.12.22.33457…y…16108.348.18.0188.018.048.088.6
(12分)函数(1)若,求的值域(2)若在区间上有最大值14。求的值;(3)在(2)的前题下,若,作出的草图,并通过图象求出函数的单调区间-高一数学
下列说法中①若定义在R上的函数满足,则6为函数的周期;②若对于任意,不等式恒成立,则;③定义:“若函数对于任意R,都存在正常数,使恒成立,则称函数为有界泛函.”由该定义可知-高三数学
已知函数为常数,(1)当时,求函数在处的切线方程;(2)当在处取得极值时,若关于的方程在上恰有两个不相等的实数根,求实数的取值范围;(3)若对任意的,总存在,使不等式成立-高三数学
(本小题满分14分)设为奇函数,为常数.(1)求的值;(2)求的值;(3)若对于区间[3,4]上的每一个的值,不等式>恒成立,求实数的取值范围.-高一数学
已知函数f1(x)=mx4x2+16,f2(x)=(12)|x-m|其中m∈R且m≠o.(1)判断函数f1(x)的单调性;(2)若m<一2,求函数f(x)=f1(x)+f2(x)(x∈[-2,2])的
已知函数则的值为.-高三数学
若是偶函数,它在上是减函数,且,则x的取值范围是()A.(,1)B.(0,)(1,)C.(,10)D.(0,1)(10,)-高一数学
(本题满分16分)已知函数(其中为常数,)为偶函数.(1)求的值;(2)用定义证明函数在上是单调减函数;(3)如果,求实数的取值范围.-高一数学
已知函数,则函数的值域为()A.B.C.D.-高三数学
函数f(x)=的单调减区间为___________________-高二数学
(本小题满分13分)(1)证明:函数在上是减函数,在[,+∞)上是增函数;-高一数学
(本题满分15分)已知在定义域上是奇函数,且在上是减函数,图像如图所示.(1)化简:;(2)画出函数在上的图像;(3)证明:在上是减函数.-高一数学
定义在上的函数,,,中,同时满足条件①;②对一切,恒有的A.共有1个B.共有2个C.共有3个D.共有4个-高三数学
函数f(x)=lnx-a(x-1)x(x>0,a∈R).(1)试求f(x)的单调区间;(2)当a>0时,求证:函数f(x)的图象存在唯一零点的充要条件是a=1;(3)求证:不等式1lnx-1x-1<1
偶函数在区间单调增加,则满足的取值范围是()A.B.C.D.-高一数学
(本小题12分)定义运算:(1)若已知,解关于的不等式(2)若已知,对任意,都有,求实数的取值范围。-高一数学
已知函数,关于的叙述①是周期函数,最小正周期为②有最大值1和最小值③有对称轴④有对称中心⑤在上单调递减其中正确的命题序号是___________.(把所有正确命题的序号都填上)-高一数学
已知函数,则满足不等式的的取值范围A.B.C.D.-高三数学
已知函数(为常数),若在区间上是单调增函数,则的取值范围是。-高一数学
若函数f(x)=(14)x,-1≤x<04x,,0≤x≤1,则f(log43)=()A.13B.43C.3D.4-数学
已知定义在上的函数满足,,则不等式的解集为_.-高三数学
若的大小关系是()A.B.C.D.-高三数学
设,都是函数的单调增区间,且,,若,则与的大小关系是()A.B.C.D.不能确定-高一数学
(本小题满分12分)定义在上的函数,对于任意的实数,恒有,且当时,。(1)求及的值域。(2)判断在上的单调性,并证明。(3)设,,,求的范围。-高三数学
定义在R上的函数f(x)满足f(x+2)=3f(x),当x∈[0,2]时,f(x)=x2-2x,则当x∈[-4,-2]时,f(x)的最小值是()A.-1B.-13C.19D.-19-数学
函数的单调递减区间为-高一数学
函数f(n)=k(其中n∈N*),k是2的小数点后第n位数,2=1.41421356237…,则f{f[f(8)]}的值等于()A.1B.2C.4D.6-数学
已知,,,,那么a,b,c的大小关系是()A.a>c>bB.c>a>bC.b>c>aD.c>b>a-高三数学
下列函数中,最小值为4的是()A.B.C.D.-高三数学
若函数,则的单调递减区间是.-高一数学
(12分)用定义法证明:函数在(1,+∞)上是减函数.-高一数学
函数y=1x2+2x+4的单调增区间为______.-数学
(10分)已知函数(1)用分段函数的形式表示该函数;(2)在坐标系中画出该函数的图像(3)写出该函数的定义域,值域,奇偶性和单调区间(不要求证明)-高一数学
(10分)已知是定义在R上的减函数,且,求a的取值范围.-高一数学
(本小题12分)已知函数是奇函数,且(1)求,的值;(2)用定义证明在区间上是减函数.-高一数学
当时,函数的最小值为A.2B.C.4D.-高三数学
设函数f(x)是上的减函数,则()A.B.C.D.-高一数学
(本小题满分12分)已知定义域为的函数是奇函数.(1)求的值;(2)若对任意的,不等式恒成立,求的取值范围.-高三数学
函数y=lg(x2+4x-5)的单调递增区间为()A.(-2,+∞)B.(-∞,-2)C.(1,+∞)D.(-∞,-5)-数学
(本题满分12分)已知函数(Ⅰ)求函数的单调区间;(Ⅱ)a为何值时,方程有三个不同的实根.-高三数学
已知函数是上的增函数,设。用定义证明:是上的增函数;(6分)证明:如果,则>0,(6分)-高一数学
已知命题p:指数函数f(x)=(2a-6)x在R上单调递减,命题q:关于x的方程x2-3ax+2a2+1=0的两个实根均大于3.若p或q为真,p且q为假,求实数a的取值范围.-高三数学
已知函数对任意的实数,满足,且当时,,则A.B.C.D.-高三数学
已知函数在上有定义,对任意实数和任意实数,都有,若,则函数的递减区间是______.-高三数学
返回顶部
题目简介
.(本小题满分12分)已知函数,是常数)在x=e处的切线方程为,既是函数的零点,又是它的极值点.(1)求常数a,b,c的值;(2)若函数在区间(1,3)内不是单调函数,求实数m的取值范围;-高三数学
题目详情
已知函数
(1)求常数a,b,c的值;
(2)若函数
(3)求函数
答案
所以
试题分析:(1)由
又
由
由
由①②③,得
(2)由(1)知
因此,
要使函数
令
(ⅰ)当函数
(ⅱ)当函数
数
解得
综上,实数
(3)由
令
由函数
当
亦即
亦即
所以
…
所以有
所以
点评:本题第一问题型基础简单,第二问需要分情况讨论,对学生有一定的难度,第三问需要借助于单调性求出最值进而转化为恒成立的不等式,难度大