优课网
首页
数学
语文
英语
化学
物理
政治
历史
生物
首页
> (12分)函数(1)若,求的值域(2)若在区间上有最大值14。求的值;(3)在(2)的前题下,若,作出的草图,并通过图象求出函数的单调区间-高一数学
(12分)函数(1)若,求的值域(2)若在区间上有最大值14。求的值;(3)在(2)的前题下,若,作出的草图,并通过图象求出函数的单调区间-高一数学
题目简介
(12分)函数(1)若,求的值域(2)若在区间上有最大值14。求的值;(3)在(2)的前题下,若,作出的草图,并通过图象求出函数的单调区间-高一数学
题目详情
( 12分)函数
(1)若
,求
的值域
(2)若
在区间
上有最大值14。求
的值;
(3)在(2)的前题下,若
,作出
的草图,并通过图象求出函数
的单调区间
题型:解答题
难度:中档
来源:不详
答案
(1)(-1,+
);(2)
的值为3或
(2)函数的单调递增区间为
,单调递减区间为
。
本试题主要是考查了函数的单调性和最值问题的综合运用。
(1)当
时 ,
∵
设
,则
在(
)上单调递增故
,
(2)
对于底数a分情况讨论得到最值。
(3)作图可知函数的单调区间。
解:(1)当
时 ,
∵
设
,则
在(
)上单调递增
故
, ∴
的值域为(-1,+
);
(2)
① 当
时,又
,可知
,设
,
则
在[
]上单调递增
∴
,解得
,故
② 当
时,又
,可知
, 设
,
则
在[
]上单调递增
∴
,解得
,故
综上可知
的值为3或
(2)
的图象,
函数的单调递增区间为
,单调递减区间为
。
上一篇 :
(本小题满分12分)探究函数的最小
下一篇 :
下列说法中①若定义在R上的函
搜索答案
更多内容推荐
已知函数为常数,(1)当时,求函数在处的切线方程;(2)当在处取得极值时,若关于的方程在上恰有两个不相等的实数根,求实数的取值范围;(3)若对任意的,总存在,使不等式成立-高三数学
(本小题满分14分)设为奇函数,为常数.(1)求的值;(2)求的值;(3)若对于区间[3,4]上的每一个的值,不等式>恒成立,求实数的取值范围.-高一数学
已知函数f1(x)=mx4x2+16,f2(x)=(12)|x-m|其中m∈R且m≠o.(1)判断函数f1(x)的单调性;(2)若m<一2,求函数f(x)=f1(x)+f2(x)(x∈[-2,2])的
已知函数则的值为.-高三数学
若是偶函数,它在上是减函数,且,则x的取值范围是()A.(,1)B.(0,)(1,)C.(,10)D.(0,1)(10,)-高一数学
(本题满分16分)已知函数(其中为常数,)为偶函数.(1)求的值;(2)用定义证明函数在上是单调减函数;(3)如果,求实数的取值范围.-高一数学
已知函数,则函数的值域为()A.B.C.D.-高三数学
函数f(x)=的单调减区间为___________________-高二数学
(本小题满分13分)(1)证明:函数在上是减函数,在[,+∞)上是增函数;-高一数学
(本题满分15分)已知在定义域上是奇函数,且在上是减函数,图像如图所示.(1)化简:;(2)画出函数在上的图像;(3)证明:在上是减函数.-高一数学
定义在上的函数,,,中,同时满足条件①;②对一切,恒有的A.共有1个B.共有2个C.共有3个D.共有4个-高三数学
函数f(x)=lnx-a(x-1)x(x>0,a∈R).(1)试求f(x)的单调区间;(2)当a>0时,求证:函数f(x)的图象存在唯一零点的充要条件是a=1;(3)求证:不等式1lnx-1x-1<1
偶函数在区间单调增加,则满足的取值范围是()A.B.C.D.-高一数学
(本小题12分)定义运算:(1)若已知,解关于的不等式(2)若已知,对任意,都有,求实数的取值范围。-高一数学
已知函数,关于的叙述①是周期函数,最小正周期为②有最大值1和最小值③有对称轴④有对称中心⑤在上单调递减其中正确的命题序号是___________.(把所有正确命题的序号都填上)-高一数学
已知函数,则满足不等式的的取值范围A.B.C.D.-高三数学
已知函数(为常数),若在区间上是单调增函数,则的取值范围是。-高一数学
若函数f(x)=(14)x,-1≤x<04x,,0≤x≤1,则f(log43)=()A.13B.43C.3D.4-数学
已知定义在上的函数满足,,则不等式的解集为_.-高三数学
若的大小关系是()A.B.C.D.-高三数学
设,都是函数的单调增区间,且,,若,则与的大小关系是()A.B.C.D.不能确定-高一数学
(本小题满分12分)定义在上的函数,对于任意的实数,恒有,且当时,。(1)求及的值域。(2)判断在上的单调性,并证明。(3)设,,,求的范围。-高三数学
定义在R上的函数f(x)满足f(x+2)=3f(x),当x∈[0,2]时,f(x)=x2-2x,则当x∈[-4,-2]时,f(x)的最小值是()A.-1B.-13C.19D.-19-数学
函数的单调递减区间为-高一数学
函数f(n)=k(其中n∈N*),k是2的小数点后第n位数,2=1.41421356237…,则f{f[f(8)]}的值等于()A.1B.2C.4D.6-数学
已知,,,,那么a,b,c的大小关系是()A.a>c>bB.c>a>bC.b>c>aD.c>b>a-高三数学
下列函数中,最小值为4的是()A.B.C.D.-高三数学
若函数,则的单调递减区间是.-高一数学
(12分)用定义法证明:函数在(1,+∞)上是减函数.-高一数学
函数y=1x2+2x+4的单调增区间为______.-数学
(10分)已知函数(1)用分段函数的形式表示该函数;(2)在坐标系中画出该函数的图像(3)写出该函数的定义域,值域,奇偶性和单调区间(不要求证明)-高一数学
(10分)已知是定义在R上的减函数,且,求a的取值范围.-高一数学
(本小题12分)已知函数是奇函数,且(1)求,的值;(2)用定义证明在区间上是减函数.-高一数学
当时,函数的最小值为A.2B.C.4D.-高三数学
设函数f(x)是上的减函数,则()A.B.C.D.-高一数学
(本小题满分12分)已知定义域为的函数是奇函数.(1)求的值;(2)若对任意的,不等式恒成立,求的取值范围.-高三数学
函数y=lg(x2+4x-5)的单调递增区间为()A.(-2,+∞)B.(-∞,-2)C.(1,+∞)D.(-∞,-5)-数学
(本题满分12分)已知函数(Ⅰ)求函数的单调区间;(Ⅱ)a为何值时,方程有三个不同的实根.-高三数学
已知函数是上的增函数,设。用定义证明:是上的增函数;(6分)证明:如果,则>0,(6分)-高一数学
已知命题p:指数函数f(x)=(2a-6)x在R上单调递减,命题q:关于x的方程x2-3ax+2a2+1=0的两个实根均大于3.若p或q为真,p且q为假,求实数a的取值范围.-高三数学
已知函数对任意的实数,满足,且当时,,则A.B.C.D.-高三数学
已知函数在上有定义,对任意实数和任意实数,都有,若,则函数的递减区间是______.-高三数学
函数的值域是.-高一数学
四个函数,,,,,,中,在区间上为减函数的是_________.-高一数学
设,若,且,则的取值范围是-高三数学
函数在上的最大值与最小值的和为。-高一数学
已知函数f(x)的定义域为[-3,+∞),且f(6)=2。f′(x)为f(x)的导函数,f′(x)的图象如图所示.若正数a,b满足f(2a+b)<2,则的取值范围是()A.∪(3,+∞)B.C.
函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为.-高三数学
函数的定义域为A,若A,且时总有,则称为单函数.例如是单函数,下列命题:①函数是单函数;②函数是单函数,③若为单函数,且,则;④在定义域上具有单调性的函数一定是单函数。其-高三数学
若奇函数在上是增函数,且,则使得的x取值范围是__________________.-高一数学
返回顶部
题目简介
(12分)函数(1)若,求的值域(2)若在区间上有最大值14。求的值;(3)在(2)的前题下,若,作出的草图,并通过图象求出函数的单调区间-高一数学
题目详情
(1)若
(2)若
(3)在(2)的前题下,若
答案
(2)函数的单调递增区间为
(1)当
∵
(2)
(3)作图可知函数的单调区间。
解:(1)当
∵
故
(2)
① 当
则
∴
② 当
则
∴
综上可知
(2)
函数的单调递增区间为