如图,△ABC的三边满足关系BC=12(AB+AC),O、I分别为△ABC的外心、内心,∠BAC的外角平分线交⊙O于E,AI的延长线交⊙O于D,DE交BC于H,求证:(1)AI=BD;(2)OI=12

题目简介

如图,△ABC的三边满足关系BC=12(AB+AC),O、I分别为△ABC的外心、内心,∠BAC的外角平分线交⊙O于E,AI的延长线交⊙O于D,DE交BC于H,求证:(1)AI=BD;(2)OI=12

题目详情

如图,△ABC的三边满足关系BC=
1
2
(AB+AC),O、I分别为△ABC的外心、内心,∠BAC的外角平分线交⊙O于E,AI的延长线交⊙O于D,DE交BC于H,
求证:(1)AI=BD;
(2)OI=
1
2
AE.
题型:解答题难度:中档来源:不详

答案

证明:(1)作IG⊥AB于G点,连BI,BD,如图,
∴AG=class="stub"1
2
(AB+AC-BC),
而BC=class="stub"1
2
(AB+AC),
∴AG=class="stub"1
2
BC,
又∵AD平分∠BAC,AE平分∠BAC的外角,
∴∠EAD=90°,
∴O点在DE上,即ED为⊙O的直径,
而BD弧=DC弧,
∴ED垂直平分BC,即BH=class="stub"1
2
BC,
∴AG=BH,
而∠BAD=∠DAC=∠DBC,
∴Rt△AGI≌Rt△BHD,
∴AI=BD;

(2)∵∠BID=∠BAI+∠ABI,
而∠BAI=∠DBC,∠ABI=∠CBI,
∴∠DBI=∠BID,
∴ID=DB,
而AI=BD,
∴AI=ID,
∴OI为三角形AED的中位线,
∴OI=class="stub"1
2
AE.

更多内容推荐