如图,已知△ABC中,AB=AC,AD是∠BAC的平分线,AE是∠BAC的外角平分线,CE⊥AE于点E.(1)求证:四边形ADCE为矩形;(2)求证:四边形ABDE为平行四边形.-八年级数学

题目简介

如图,已知△ABC中,AB=AC,AD是∠BAC的平分线,AE是∠BAC的外角平分线,CE⊥AE于点E.(1)求证:四边形ADCE为矩形;(2)求证:四边形ABDE为平行四边形.-八年级数学

题目详情

如图,已知△ABC中,AB=AC,AD是∠BAC的平分线,AE是∠BAC的外角平分线,CE⊥AE于点E.
(1)求证:四边形ADCE为矩形;
(2)求证:四边形ABDE为平行四边形.
题型:证明题难度:中档来源:四川省期末题

答案

(1)证明:∵AB=AC,AD是∠BAC的平分线,
∴AD⊥BC,
∵AD是∠BAC的平分线,AE是∠BAC的外角平分线,
∴∠DAC+∠CAE=90°,即∠DAE=90°,
∵△ABC为等腰三角形,
∴AD为高(三线合一),
∴∠ADC=90°,
又∵CE⊥AE,
∴∠ADC=∠AEC=90°,
∴四边形ADCE为矩形;
(2)证明:由(1)得,AE=DC=DB,AE∥BD,
∴四边形ABDE为平行四边形.

更多内容推荐